Personal tools

Subproject T

Technology platform for fluorescence correlation spectroscopy

This project provides a technology platform for fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) to the Clinical Research Group. FCS and FCCS are biophysical methods for the assessment of quantitative parameters of biomolecular systems and can be used to determine concentrations, mobilities and interactions of fluorescently labeled molecules on a single molecule level in real time. FCS/FCCS is applied to aqueous environments such as living cells and therefore allows the analysis of the in-situ biochemistry. In contrast to other fluorescence based techniques such as co-localization and fluorescence resonance energy transfer (FRET), FCCS is more specific and less dependent on the exact positioning of the fluorescent labels within molecules. In addition to providing FCS/FCCS support on a turnkey instrument of the Dresden technology platform, this project aims to develop the methodological basis for implementation of three color (three components) applications in cells.

Subproject Manager

Platzhalter Bild

Petra Schwille, Prof. Dr. rer. nat.

Biotechnologisches Zentrum
Technische Universität Dresden

Homepage

http://www.biotec.tu-dresden.de/cms/index.php?id=55

Staff

Dr. rer. nat. Wolfgang Staroske, Postdoc
Tel.: 0351-463 40316
Email: wolfgang.staroske@biotec.tu-dresden.de

Selected Publications

Kind B, Muster B, Staroske W, Herce HD, Sachse R, Rapp A, Schmidt F, Koss S, Cardoso MC, Lee-Kirsch MA. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutières syndrome. Hum Mol Genet. 2014; 23(22): 5950-60.

Kretschmer S, Wolf C, König N, Staroske W, Guck J, Häusler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, Dahl A, Rapp A, Cardoso MC, Shevchenko A, Lee-Kirsch MA. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis. 2014 Jan 29. doi: 10.1136/annrheumdis-2013-204845.

Tüngler V, Staroske W, Kind B, Dobrick M, Kretschmer S, Schmidt F, Krug C, Lorenz M, Chara O, Schwille P, Lee-Kirsch MA. Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berl.) 2013 Jun;91(6):759-70. doi: 10.1007/s00109-013-0995-3.

Ohrt T, Muetze J, Svoboda P, Schwille P. Intracellular localization and routing of miRNA and RNAi pathway components. Curr Top Med Chem 2012; 12(2):79-88.

Schwille P. Bottom-up synthetic biology: engineering in a tinkerer's world. Science 2011; 333(6047):1252-4.

Ohrt T, Staroske W, Mütze J, Crell K, Landthaler M, Schwille P. Fluorescence cross-correlation spectroscopy reveals mechanistic insights into the effect of 2'-O-methyl modified siRNAs in living cells. Biophys J 2011; 100(12):2981-90.

Sahoo H, Schwille P. FRET and FCS-friends or foes? Chemphyschem 2011; 25;12(3):532-41.

Yu SR, Burkhardt M, Nowak M, Ries J, Petrásek Z, Scholpp S, Schwille P, Brand M. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 2009; 461(7263):533-6.

Ries J, Yu SR, Burkhardt M, Brand M, Schwille P.
Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 2009; 6:643-645.

Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res  2008; 36(20):6439-49.


Kim SA, Heinze KG, Schwille P. Fluorescence correlation spectroscopy in living cells. Nat Methods 2007; 4:963-973.

Bacia K, Schwille P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2007; 2:2842-2856.

Bacia K, Kim SA, Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 2006; 3:83-89.

Kim SA, Heinze KG, Waxham MN, Schwille P. Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci USA 2004; 101:105-110.