

Klinik und Poliklinik für HNO-Heilkunde, Kopf- und Hals-Chirurgie

Schalldruck-Äquivalente Messgrößen für implantierbare Sensoren im Mittelohr

<u>Matthias Bornitz</u>, Martin Koch, Till-Moritz Eßinger, Nikoloz Lasurashvili, Marcus Neudert, Thomas Zahnert DGA 2019

Implantierbare Sensoren

Sensortypen

- Mikrofone/Hydrofone (subkutan, Paukenhöhle, Cochlea)
- Bewegungssensoren: Beschleunigung, Geschwindigkeit, Weg
- Kraftsensoren
- Jeweils verschiedene Bauformen und Nutzung unterschiedlicher physikalischer Prinzipe:
 - piezoelektrisch, piezoresistiv,
 - elektrodynamisch, kapazitiv,
 - optischer Doppler Effekt, Lichtintensität

Implantierbare Sensoren (Fluidschall)

3

Implantierbare Sensoren (Bewegungen)

Weg

Geschwindigkeit

Beschleunigung

Faser, opt.Sensor, DE102009051771A1

Interferometer, Tomic2017, Djinovic2018

Implantierbare Sensoren (Kraft)

Piezo or SG

Kraftsensor am Amboß

Kraftsensor im Gelenkspalt

Koch2019

Biegebalken am Umbo u.ä.: Yip2013, Yip2015

Esteem, Kroll2002

Universitätsklinikum Carl Gustav Carus DIE DRESDNER.

Messaufbau, Datenerfassung, Auswertung

LDV am Steigbügel: Geschwindigkeit (-> Weg und Beschleunigung)

Kraftsensor im Incudo-stapedial Gelenk

Mikrofon in der Paukenhöhle

Simulation im Modell; Kräfte am Hammer-Amboß-Komplex

Frequenzgang

Messort, Richtung, Komponenten

Abweichungen und Streuung mindern Dynamikbereich

> Universitätsklinikum Carl Gustav Carus DIE DRESDNER

interindividuelle Variabilität

Universitätsklinikum Carl Gustav Carus DIE DRESDNER.

interindividuelle Variabilität

DIE DRESDNER.

interindividuelle Variabilität

DIE DRESDNER.

Frequenzgang

Einfluss Messort

FE Simulationsmodell des MO

Kräfte am Hammer-Amboß-Komplex bei Schalldruckanregung am Trommelfell

ANSYS

APR 10 2018 18:52:42

0.1

0.01

0.001

1E-4 -

Graph1

100

Amplitude in mN/Pa

Ankopplungspunkt 1

Übertragungsfunktion:

Kraft am Amboß bezogen auf

500

Kraftkomponenten und Resultierende

Graph3 M:\projekte\mikrofon_paukenhoehle\Experimente_Studien\mikropauke_2016_06_07

Zusammenfassung

- Skalare (Schalldruck) und vektorielle Messgrößen (Bewegungen, Kräfte)
- Interindividuelle Streuung bei jeder Messgröße unterschiedlich (Messort, Richtung)
- Kein konstanten Frequenzgänge
- Resonanz, Antiresonanz im Frequenzgang
- Kräfte und Beschleunigungen sind eher günstige Messgrößen im Mittelohr
- Sensorfrequenzgang mit Frequenzgang der Messgröße abgleichen

Klinik und Poliklinik für HNO-Heilkunde, Kopf- und Hals-Chirurgie

Vielen Dank für Ihre Aufmerksamkeit.

Kontakt:

Matthias Bornitz Telefon: 0351 458-12025 E-Mail: matthias.bornitz@ukdd.de Internet: https://www.uniklinikum-dresden.de/de/das-klinikum/klinikenpolikliniken-institute/hno/forschung/forschungslabor-gehoer

Adresse:

Universitätsklinikum Carl Gustav Carus an der TU Dresden AöR Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde Fetscherstraße 74, 01307 Dresden