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Abstract 

Background Accumulating data emphasizes the importance of olfaction in migraine pathophysiology. However, 
there are only a few studies evaluating how the migraine brain processes olfactory stimulation, and virtually no stud-
ies comparing patients with and without aura in this context.

Methods This cross-sectional study recorded event-related potentials from 64 electrodes during a pure olfactory or 
pure trigeminal stimulus in females with episodic migraine with aura (n = 13) and without aura (n = 15), to character-
ize the central nervous processing of these intranasal stimuli. Patients were tested in interictal state only. Data were 
analyzed in the time domain and in the time–frequency domain. Source reconstruction analysis was also performed.

Results Patients with aura had higher event-related potentials amplitudes for left-sided trigeminal and left-sided 
olfactory stimulations, and higher neural activity for right-sided trigeminal stimulation in brain areas related to trigem-
inal and visual processing. Following olfactory stimulations patients with aura displayed decreased neural activity in 
secondary olfactory structures compared to patients without aura. Oscillations in the low frequency bands (< 8 Hz) 
differed between patient groups.

Conclusions Altogether this may reflect hypersensitivity to nociceptive stimuli in patients with aura relative to 
patients without aura. Patients with aura have a bigger deficit in engaging secondary olfactory-related structures, pos-
sibly leading to distorted attention and judgements towards odors. The cerebral overlap between trigeminal nocicep-
tion and olfaction might explain these deficits.
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Background
Among neurological disorders, migraine is the leading 
cause of disability and is associated with increased sen-
sitivity to light, sound, touch, and smell. Migraine attacks 
are more common in women than in men, last longer and 
are more disabling [1–4]. Accumulating data emphasizes 
the importance of olfaction in migraine pathophysiol-
ogy. Osmophobia (aversion and intolerance to odors) 
in particular, affects up to 90% of the migraine patients 
[5–7] and is also experienced interictally, i.e. apart from 
migraine attacks [8]. Moreover, odors, especially per-
fumes and cleaning products, can trigger headaches in 
around 45% of these patients [5, 6, 9], and this seems to 
be specific to migraine headaches [10–13].

Although the olfactory system has central role in 
migraine, there are to date only few imaging studies 
evaluating how the brain of people with migraine process 
olfactory [14–17] or intranasal trigeminal stimulation 
[15, 18–20]. Migraine patients are subjected to specific 
cerebral states, as shown by an enhanced deep cerebral 
activity for these patients in the amygdala, the insula, the 
rostral pons, the piriform cortex, the temporal pole and 
the antero-superior temporal gyrus in the interictal state 
[14], during spontaneous migraine attacks [17], in rest-
ing-state [14] or in response to odors [14, 17]. Decreased 
cortical activity during odor processing [14–16], together 
with increased cortical activity during trigeminal pro-
cessing was also reported [15]. The prefrontal cortex and 
the rostral anterior cingulate cortex, both known to be 
involved in pain control, showed abnormal activity after 
intranasal trigeminal stimulation in migraine patients 
[18].

Whether these results are confounded by the inclusion 
of patients with aura (MWA) and without aura (MWoA) 
remains unknown. Yet, several studies point to differences 
between migraine patients with and without aura in terms 
of heritability [21], association with ischemic stroke and 
depression [21, 22], alteration in brain structure [21] and 
function (especially in the form of cortical hyperexcit-
ability in MWA) [21, 23], and cerebral blood flow changes 
during attacks [21]. This suggests that MWA and MWoA 
could be considered as two entities [24] and should be 
investigated separately [23].

Moreover, odors have been found to be more offen-
sive in MWA than MWoA [7]. Given that most odorants 
commonly activate both trigeminal and olfactory neu-
rons [25], it is important to understand whether these 
groups of patients show a differential olfactory brain pro-
cessing to these two types of stimulation.

Thus, the aim of this study was to characterize, for the 
first time, the central nervous processing of olfactory 
and nasal trigeminal stimuli in females with migraine 
with aura and without aura separately. For this purpose, 

electroencephalography (EEG) was recorded while 
patients received a pure olfactory stimulus or a pure 
trigeminal stimulus, in the left or in the right nostril.

Methods
Participants
Twenty-eight women with episodic migraine (monthly 
days of migraine attacks: mean 4.3 ± Std 2.37), diagnosed 
according to the International Classification of Headache 
Disorders, 3rd edition (ICHD III) [26] were recruited 
for this study (mean age = 35 ± Std 9.8  years, range 
21–51 years): 13 MWA (mean age = 32.5 ± Std 8.3 years, 
range 22–44 years) and 15 MWoA (mean age = 37.1 ± Std 
10.6 years, range 21–51 years). The study sample size was 
based on similar experiments involving EEG assessments 
of odor stimulations using time domain, time–frequency 
and source reconstruction analyzes (from 10 to 23 par-
ticipants per condition) [15, 27–30]. Since women are 
three to four times more affected by migraine than men, 
and women outperform men in detecting, discriminating 
and identifying olfactory cues [31, 32] our study included 
only women. Patients were tested during the interictal 
phase only. The interictal phase was defined as a free of 
migraine-specific symptoms period (including fatigue, 
concentration disturbances) after a migraine attack of at 
least 48 consecutive hours. This means that the patients 
were included in the study only if they did not have a 
migraine attack 24 h before and 24 h after the investiga-
tion. They were recruited at the Headache Clinic at the 
University Pain Center at TU Dresden between October 
2019 and December 2020. The exclusion criteria were the 
following: pregnancy, major chronic disease, olfactory 
loss, relevant sinunasal diseases (i.e., chronic rhinosinusi-
tis, allergic rhinitis, nasal polyps), asthma, acute mental 
disorders, attentional dysfunction, insufficient communi-
cation skills, and smoking. Patients were all right-handed. 
For details regarding participants demographics and clin-
ical characteristics see Table 1. All participants provided 
written informed consent. Data was collected in accord-
ance with the declaration of Helsinki related to human 
research and with the Declaration of the World Medical 
Association (www. wma. net). The protocol was approved 
by the Ethics Committee of the TU Dresden (GVOEK) 
under the application number EK 58,022,015. For their 
participation, the subjects received financial compensa-
tion. The datasets used and/or analysed during the cur-
rent study are available from the corresponding author 
on reasonable request.

Stimulations
Stimuli were presented using a computer-controlled 
olfactometer (OM6b, Burghart, Holms, Germany) that 
allows for the presentation of odorants in a constant 

http://www.wma.net
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airflow of 6L/min, humidified air of controlled tempera-
ture (36  °C, relative humidity 80%). Stimuli were pre-
sented by means of a Teflon tube (8  cm length, 4  mm 
inner diameter) inserted into the nostril (right or left) 
for around 1 cm in order to reach beyond the nasal valve 
region. Twenty stimuli of each condition (olfactory: choc-
olate (PG93157, Fragrance Resources GmbH, Germany) 
50% v/v diluted in an odorless airflow, and trigeminal 
stimulation:  CO2, 45% v/v) were presented (200 ms stim-
ulus duration) with a 16 s average inter-stimulus interval 
(range: 14-18 s).

Procedure
The procedure was divided in two main sessions of one 
hour and a half each separated by a break of 5 to 10 min. 
One session was dedicated to psychophysical testing and 
the other consisted in EEG measurements.

The EEG experiment took place in an air-conditioned 
room set at a temperature of 20–22 °C. During the EEG 
experiment itself, the patients were subjected to four ses-
sions of 5 min each in which 20 stimuli of one of the stim-
ulation types were sent through a tubing to one nostril. 
The session order was not counterbalanced due to the 
fact that migraine patients are very sensitive and the  CO2 
stimulation may disturb the following assessment. Thus, 
the order was always « chocolate» followed by  CO2 in the 
left nostril and then in the right nostril (chocolate left, 
 CO2 left, chocolate right,  CO2 right). Nostrils were stim-
ulated separately to avoid the airflow to reach the olfac-
tory epithelium at different timings in the case of birhinal 
stimulation. This had also the advantage to minimize 
habituation. Patients also performed a tracking task (fol-
lowing with the computer mouse a square moving on the 

computer screen) to maintain their attention throughout 
the EEG recording.

Psychophysical chemosensory testing
The olfactory performance of the patients was assessed 
using the Sniffin’ Sticks test [32, 33], a standardized test 
subdivided in three tasks namely Threshold (the ability to 
detect a smell), Discrimination (the ability to differenti-
ate smells) and Identification (the ability to label smells). 
The threshold test consists of 16 triplets of increasing 
odor concentrations. At each trial, the patient has to 
choose the stick among three that contains a smell, the 
two others being odorless. This is a single-staircase, three 
alternatives forced-choice procedure. The order of tri-
plets’ presentation (increasing the odor concentration or 
decreasing it) is adapted according to the false and right 
answers until the test reaches seven turning points, and 
a mean threshold is calculated with the four last turning 
points. The discrimination test consists also of 16 triplets 
of sticks. In this case however, all the sticks contain a 
high concentration scent. At each trial, amongst the three 
sticks, two odors are identical and the third one is dif-
ferent. The aim is to determine the odd one. A discrimi-
nation score corresponding to the sum of the correct 
answers is established. The identification test includes 
also 16 sticks filled with high concentration odors, and 
they are presented one by one, each of them with an 
images booklet. The aim for the patient is to point out 
the item corresponding to the odor among four alterna-
tives. The identification score corresponds to the sum of 
the correct answers. The sum of the scores from the three 
subtests resulted in the TDI score with a maximum of 
48 points. A TDI score of 30.5 points or more suggests 
normosmia, a score between 16.5 and 30 points indicates 

Table 1 Population description

Description of migraine patients with aura (MWA) or without (MWoA)

Population description MWA n = 13 MWoA n = 15

Age 32.5 ± Std 8.3 years, range 22–44 years 37.1 ± Std 10.6 years, range 21–51 years

Disease duration (years) 14.8 ± Std 8.6 13.1 ± Std 9.7

Frequency of migraine days in the past month 4.4 ± Std 2 4.2 ± Std 2.7

Duration of attacks (hours) related to the frequency of 
migraine attacks in the past month (regardless whether 
acute medication was taken or not)

4.5 ± Std 3.1 14.3 ± Std 21.8 (2 patients above 60 h)

Mean intensity of migraine attacks in the past month (from 
0 = not intense to 10 = extremely intense)

4.2 ± Std 1.5 5 ± Std 2

Osmophobia (yes/no) Q1 “Are you sensitive to scents before/
during the migraine attack”: 6 yes/6 no/1 
missing
Q2 “Can odors trigger a migraine attack”: 3 
yes/9 no/1 missing

Q1 ““Are you sensitive to scents before/
during the migraine attack”: 7 yes/7 no/1 
missing
Q2 ““Can odors trigger a migraine attack”: 1 
yes/13 no/1 missing

Symptoms during migraine attacks associated with the 
sensitivity to odors (yes/no)

3 yes/7 no/3 missing 5 yes/10 no



Page 4 of 13Mignot et al. The Journal of Headache and Pain           (2023) 24:55 

reduced olfactory function in terms of hyposmia, and 
a score of less than 16.5 points implies anosmia. The 
trigeminal sensitivity of the patients was assessed using 
a lateralization test with a trigeminal eucalyptus smell. In 
this task, two identical airflows were applied to both nos-
trils using a handheld “squeezing device” which releases 
the same amount of air simultaneously to the left and 
right nostrils. One side received the target odorant, while 
the other side received odorless air. The sides of the odor-
ant stimulation were changed in pseudo-randomized 
order. If the odorant has a trigeminal component, and if 
the patient has a good trigeminal sensitivity, the success 
rate in detecting the stimulated nostril increases signifi-
cantly. See the details elsewhere [34, 35].

EEG recording
Sixty-four Ag–AgCl pin-type active electrodes record-
ing the scalp potentials were mounted on a cap using 
gel, according to the 10–20 system. Eight Ag–AgCl flat-
type electrodes were used, two were placed on the ear-
lobes and two on the mastoids in case we wanted to test 
another offline referencing, and four to identify vertical 
and horizontal eye-blinks in the signal (two above the lat-
eral extremity of the eyebrows and two on the lateral side 
of the eyes). The recording was performed with a Biosemi 
bioamplifier (BioSemi, Amsterdam, Netherlands) and 
its associated software Actiview. The sampling rate was 
512 Hz. Impedance was kept below 25 kOhm.

EEG pre‑processing and processing steps
General steps
The preprocessing steps were performed using Letswave 
7 software (https:// letsw ave. cn/) and EEGLAB 2020 (La 
Jolla, CA, USA).

The following steps apply to each participant and con-
dition. A Butterworth filter was applied with high-pass 
at 0.1 Hz and low-pass at 30 Hz. Epochs were segmented 
from 500 ms pre-stimulus to 2000 ms post-stimulus. A 
baseline correction was applied from -500  ms to 0  ms 
(relative to the stimulus onset). The signal was visually 
inspected to determine which epochs have to be rejected 
(lead movements, muscular artefacts) regardless of the 
eye-blinks artefacts that were corrected later on. Bad 
electrode interpolation occurred when necessary using 
spherical spline interpolation. The signal was offline ref-
erenced to the common average. Independent Compo-
nent Analysis (ICA) was performed to remove eye-blink 
components from the data (EEGLAB 2020, La Jolla, CA, 
USA) with “runica” as algorithm, using a PCA (principal 
component analysis) step and a fixed number of 30 com-
ponents. Components considered as eye-blink artefacts 
were discarded on the basis of: 1) frontal distribution 
of the ICA weights on the scalp map, 2) large amplitude 

dynamics randomly distributed across the trials, 3) 
time-course mainly affected by characteristic short and 
large monopolar potentials, 4) smoothly decreasing 
power spectrum. After the ICA, epochs were checked 
again and those whose amplitude exceeded 80 µV were 
excluded, as well as remaining eye-movements occurring 
in the -500 to 1500 ms post-stimulus range. The remain-
ing epochs were averaged for each stimulation, nostril 
side and participant separately. For detailed information 
regarding the number of epochs averaged in each group 
and condition, and the number of patients with missing 
data, see Additional files 1 and 3.

Frequency domain pre‑processing steps
The time–frequency analysis (TFA) was applied on the 
previously preprocessed and accepted single epochs in 
two more steps: a Continuous Wavelet Transform (CWT) 
in the 0.3-30  Hz bandwidth in 100 steps, and a supple-
mentary baseline correction (substraction method) from 
-400 ms to -100 ms relative to the stimulus onset, before 
averaging at the group level. For more information about 
this procedure, see Huart and colleagues’ paper [27]. 
While the time-domain averaging gives an idea of the 
phase-locked activity of the brain response to chocolate 
or  CO2 sent in the left or in the right nostril, the analysis 
using CWT was used in order to reflect the non-phase 
locked activity.

EEG source imaging
EEG source imaging was implemented in the Cartool 
3.91 (6638) software (https:// sites. google. com/ site/ carto 
olcom munity/) using the signal from the 64 electrodes. 
Full head and segmented brain MNI templates from 152 
healthy subjects with 114 regions of interest included in 
the AAL atlas, an electrodes coordinate file adapted to 
the Biosemi system with 64 channels and coregistered 
to the MRI, were used for the source reconstruction 
algorithm implementation. All these files and the solu-
tion points file (4888 solution points) were provided by 
Cartool. The lead field was computed using the LAURA 
source localization algorithm [36] from the solution 
points and electrodes in a semi-automated way guided by 
Cartool, using the LSMAC (Locally Spherical Model with 
Anatomical Constraints) on the individual means of each 
condition separately over the whole ERP time window.

Event‑related potentials (ERP) assessment
The presence, amplitude and latencies of the ERP were 
assessed on the Pz electrode only. The literature on olfac-
tory and trigeminally elicited cerebral responses usu-
ally reports midline positions as the best recording sites 
[27, 30, 37–43]. However, it has been shown that N1 and 
P2 components for trigeminal stimuli have maximum 

https://letswave.cn/
https://sites.google.com/site/cartoolcommunity/
https://sites.google.com/site/cartoolcommunity/
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amplitudes over Cz [43] and over Pz when it comes to 
olfactory ERP [39, 41, 43]. As the SNR is usually better for 
trigeminal ERP than olfactory ERP [39], Pz seems to be a 
good compromise. The presence of the ERP was estimated 
considering the shape and latency of the different peaks: 
a small positivity (P1) in the range of 200-320  ms post-
stimulus followed by a medium negativity (N1) in the 200-
700 ms post-stimulus range, a large positivity (P2) in the 
300-800 ms post-stimulus range and a large positivity (P3) 
in the 700-1100  ms range. In few occasions (27 latency 
measurements out of 316), the measurements of laten-
cies were out of these boundaries (for more information, 
see Additional file 2) but were still included in the analyses, 
as the previous ranges are defined for a healthy population 
but that the present study is focused on general migraine 
patients. The latency ranges and the peak designation were 
defined according to the literature on chemosensory ERPs 
[37, 39, 44]. There is no consensus on the terminology of 
the different ERP peaks in the chemosensory research 
domain: in some studies P2 and P3 are considered as a 
unique component; when divided as here, P2 usually refers 
to the P3a described in other sensory modalities while 
P3 is the late positive component [44] equivalent to P3b 
in other sensory modalities. The latencies of the different 
peaks (P1, N1, P2, P3), the peaks’ relative values (relative to 
the baseline) and peak-to-peak amplitudes were measured 
heuristically by one observer (P1, N1, P2, P3, N1P2, N1P3).

Data analyses
Classical group comparisons
The features of the ERP peaks were compared between 
MWA and MWoA using two-tailed unpaired t-test or a 
Mann–Whitney test (according to their p-value at the 
Shapiro–Wilk test of normality: P < 0.05 would lead to the 
Mann–Whitney test).

A two-tailed unpaired t-test was applied on the time–
frequency analysis maps, comparing MWA and MWoA 
(MWA being the reference subset).

Receiver operating characteristic curves and discrimination 
performance
The ability to differentiate MWA from MWoA based on 
each of their ERP features (amplitudes of N1, P2, P1N1, 
and N1P2) and each of the stimulus conditions was 
assessed using Receiver Operating Characteristic (ROC) 
curves. A ROC curve is represented by the specificity 
(true positive rate) plotted against sensitivity (false posi-
tive rate). The area under the curve (AUC) was calculated 
and indicated good discrimination performance (when 
AUC is close to 0 or 1) or bad discrimination perfor-
mance (when AUC is close to 0.5) of each feature.

Source imaging
An unpaired t-test was applied via Cartool on the 
results of the inverse solution to compare source 
signal between MWA and MWoA. The whole epoch 
time course (pre- and post-stimulus) was consid-
ered and the t-test was applied on each time-frame, 
with a level normalization using the mean Gfp. The 
results of this t-test are reported for a minimum of 
significant differences on 16 consecutive time-frames 
(~ 31 ms).

Statistical analyses
For all the tests, the normality of the data was checked 
using the Shapiro–Wilk test. Whenever a deviation 
from normality was detected, the corresponding non-
parametric tests were used. A repeated measures 
ANOVA was performed for each peak individually 
(P1, N1, P2, P3) using the nostril side (right or left) 
and stimulation type (chocolate or CO2) as repeated 
measures factors and the aura status as between sub-
ject factor. T-tests were performed as post hoc tests. In 
the eventuality of such tests, the p-values reported were 
Bonferroni corrected. P values and degrees of freedom 
are reported. In addition, two-tailed unpaired t-test 
or Mann–Whitney test were applied on amplitudes 
and latencies of the ERP peaks. For all tests, a P < 0.05 
was considered as significant. Some effect sizes are 
reported, they correspond to Eta squared values for the 
repeated measures ANOVA, Cohen’s d for the unpaired 
t-tests and rank biserial correlation for the Mann–
Whitney tests. Regarding source imaging, uncorrected 
findings were considered.

Results
Results from psychophysical chemosensory testing
All the patients were considered normosmics as they 
had similar general olfactory function compared to 
healthy subjects from published normative data [32] 
(TDI scores, two tailed Wilcoxon signed rank test, Z(df 
27) = 155, P = 0.279). However, when assessing the indi-
vidual olfactory subtests, patients had a lower olfactory 
sensitivity (i.e. higher olfactory thresholds) compared 
to the normative data (two-tailed one sample t-test 
t(27) = 2.66, P = 0.013, effect size = -0.50). No differ-
ences were found for olfactory discrimination and iden-
tification abilities.

The overall olfactory function, the discrimination and 
identification performances were not significantly dif-
ferent for MWA and MWoA. However, the MWA had 
higher thresholds than MWoA, i.e. MWA odor detec-
tion ability was worse than in MWoA (Mann–Whitney 
test, U = 36.5, P = 0.005, effect size = -0.63).
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Time‑domain results
According to the ERPs (Fig. 1), the amplitude of the  CO2 
response in the left nostril was significantly higher in 
MWA compared to MWoA for P3 and N1P3 (two-tailed 
unpaired t-test, df = 19, for P3: P = 0.013, 95% CI [-2.14, 
-0.25], Cohen’s D = -1.21; for N1P3: P = 0.038, 95% CI 
[-1.89, -0.06], Cohen’s D = -0.99). In addition, the ampli-
tude of the chocolate response in the left nostril was 
significantly higher in MWA compared to MWoA for 
P2 and P3 (two-tailed unpaired t-test, df = 15, for P2: 
P = 0.035, 95% CI [-2.14, -0.08], Cohen’s D = -1.13; for 
P3: P = 0.023, 95% CI [-2.26, -0.16], Cohen’s D = -1.23). 
No significant effects were found on amplitudes for 
other peaks (P1, N1, P1N1, N1P2) and stimuli  (CO2 in 
the right nostril, chocolate in the right nostril). No other 
effect was found on other peak latencies. A repeated 
measures ANOVA revealed significant effects: the 
stimulation type affected the amplitude of P2 (df = 1, 
F = 5.87, P = 0.036, η2 = 0.06,  CO2 > chocolate). A general 
interaction between the stimulated side and the stim-
ulation type was also found for P1 and N1 (P1: df = 1, 
F = 22.80, P < 0.001, η2 = 0.07, left > right for chocolate 
and right > left for  CO2; N1: df = 1, F = 5.67, P = 0.039, 
η2 = 0.07, right > left for chocolate and left > right for 
 CO2), which also depended on the aura status of the 
patients for P1 (df = 1, F = 5.88, P = 0.036, η2 = 0.02, 

MWA had higher amplitudes for chocolate on the left 
and for  CO2 on the right side, while MWoA had higher 
chocolate and  CO2 amplitudes on the right side). In 
other words independent of the patient group, the P1 
and N1 amplitudes were higher for left-sided stimula-
tions with chocolate compared to right-sided ones, and 
it was the other way around for stimulation with  CO2. 
Finally, there was an interaction between the nostril side 
and the aura group for P2, P3 and N1P2 amplitudes (P2: 
df = 1, F = 7.32, P = 0.022, η2 = 0.04; P3: df = 1, F = 5.47, 
P = 0.041, η2 = 0.04; N1P2: df = 1, F = 6.41, P = 0.030, 
η2 = 0.03; for all peaks: left > right in MWA, right > left 
for MWoA): the left-sided amplitudes for P2 and N1P2 
were higher than the right-sided stimulations in MWA 
and it was the opposite for MWoA. The corresponding 
post hoc tests were non-significant.

Among all the peak and peak-to-peak amplitudes, P3 
amplitudes in response to  CO2 in the left nostril elicited 
the best score in predicting the group affiliation with an 
AUC of 0.80, with P = 0.02 (Fig. 2). There was also a ten-
dency for P2 amplitudes in response to left-sided  CO2: 
AUC 0.71 and P = 0.09.

In addition, the P3 amplitudes for left-sided CO2, the 
P2 and P3 amplitudes for right-sided CO2 and the P1 
amplitudes for left-sided chocolate stimulation were sig-
nificantly higher for the patients who answered yes than 

Fig. 1 Group level trigeminal and olfactory ERP in MWA and MWoA, in left or right nostrils. The stimulus onset is positioned at 0 s (dotted black 
line). Signals were taken from the Pz electrode. Bold blue line: MWA; Dotted red line: MWoA. Choc: Chocolate, L: left, R: right. Significant differences 
in peaks amplitudes between aura and without aura groups were found with  CO2L for P3 and N1P3 and with the chocolate odor for P2 and P3 
(two-tailed unpaired t-test P < 0.05, MWA > MWoA)



Page 7 of 13Mignot et al. The Journal of Headache and Pain           (2023) 24:55  

the ones who answered no to the question “can odors trig-
ger a migraine attack?” (two-tailed independent samples 
t-test, P3 CO2L: t(18) = 2.24, P = 0.038, Cohen’s D = 1.25; 
P2 CO2R: t(17) = 2.82, P = 0.012, Cohen’s D = 1.59; 
P3 CO2R: t(17) = 2.72, P = 0.015, Cohen’s D = 1.53; P1 
ChocL: t(15) = 2.17, P = 0.047, Cohen’s D = 1.63). No dif-
ferences of amplitudes were found between the patients 
who answered yes or no to the question “Are you sensi-
tive to scents before/during the migraine attack”. The 
duration of migraine attacks had an impact on P2 ampli-
tudes for left-sided CO2 stimulation: the longer the dura-
tion, the lower the amplitude (Spearman’s rho = -0.498, 
P = 0.035). An age-related effect was also found for right-
sided trigeminal P1 (Spearman’s rho = 0.465, P = 0.045, 
increasing amplitude with age) and right-sided olfactory 
P2 (Pearson’s r = -0.490, P = 0.021, decreasing amplitude 
with age).

Time–frequency analysis
The time frequency analysis revealed a significant dif-
ference between MWA and MWoA concerning brain 
responses to all stimulation types (unpaired t-test, 
P < 0.05), see Fig. 3.

The  CO2 stimulation in the left nostril led to a stronger 
power in low frequencies (< 8  Hz) in MWA compared 
to MWoA (see Table 2 for details). On the contrary, in a 
later stage, MWoA had stronger power in low frequen-
cies compared to MWA. The right-sided  CO2 stimuli also 
induced power differences with higher power for MWA 

in the range of theta (theta: 4-8  Hz) frequencies, and 
stronger power for MWoA in the delta (delta: 0.1-4 Hz) 
frequency range. The left- and right-sided chocolate 
stimulations induced a stronger power in low frequencies 
(< 8  Hz) for MWA compared to MWoA (see the black 
rectangles in Fig. 4).

Source localization results
The right-sided stimulation with  CO2 involved higher 
neural activity in MWA compared to MWoA during four 
main time-courses (unpaired t-test, P < 0.05, subtract-
ing groups: MWA-MWoA, positive t-values) (for more 
details, see Fig. 4 from Additional file 5). This was in the 
early stage of the response (248–289 ms post-stimulus) in 
the left fusiform gyrus (Fus) and the left precuneus (Prec). 
It was secondly in the right postcentral gyrus (A1), the 
right caudal inferior parietal lobule, and the left putamen 
(353–438  ms post-stimulus), the left superior parietal 
lobule, right pons. The third time period corresponded 
to 482–738 ms post-stimulus and involved the right pre-
central gyrus (brodmann 4). Finally, in a later stage of the 
response (978–1051  ms post-stimulus), MWA involved 
more their right calcarine sulcus (primary visual cortex 
V1, hOc1) and premotor cortex (BA6).

The left-sided stimulation with chocolate involved 
lower neural activity in MWA than MWoA firstly in the 
bilateral paracentral lobule, the precentral gyrus, the left 
superior parietal lobule, the left amygdala, the left para-
hippocampal gyrus, the left culmen of the cerebellum, the 

Fig. 2 ROC curve and corresponding Area Under the Curve (AUC) for P3 amplitude for left-sided  CO2. The model calculated the specificity and 
sensitivity of classification of P3 amplitudes between MWA and MWoA. This corresponded to Pz electrode signal
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Fig. 3 Time–frequency analysis (TFA) on ERPs. Significant differences between MWA and MWoA are marked by black rectangles: only frequencies 
in the lower range (below 8 Hz) are reported. These time–frequency windows are numbered with a practical aim for further description, i.e. TF-1…
TF-11 (Table 2). Maps represent frequencies across time, time-point 0 being the stimulus onset (vertical dashed line). Color scales express the power 
(µV2/Hz) and are normalized across groups and stimuli. The data was taken from Pz electrode. Choc: Chocolate, L: left, R: right
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left pons. This happened in the middle phase post-stim-
ulus, i.e. around 357–441  ms post-stimulus (unpaired 
t-test, P < 0.05, subtracting groups: MWA-MWoA, nega-
tive t-values) (for more details, see Fig. 5 from Additional 
file 5). In addition, in a later stage of the response (482-
738  ms post-stimulus), MWA presented lower neural 
activity than MWoA in the right middle frontal gyrus, 
the right lentiform nucleus of the putamen and the right 
brainstem.

The right-sided stimulation with chocolate involved 
lower neural activity in MWA than MWoA in the left 
lateral globus pallidus, the left lentiform nucleus, the 
left thalamus, left amygdala, the left parahippocampal 
gyrus, and the left pons. This happened in the middle 
phase post-stimulus, i.e. around 570–724  ms post-stim-
ulus (unpaired t-test, P < 0.05, subtracting groups: MWA-
MWoA, negative t-values) (for more details, see Fig.  6 
from Additional file 5).

Discussion
To assess whether olfactory and trigeminal stimuli are 
differentially processed in MWA and MWoA, event-
related potentials have been compared for both groups.

Hypersensitivity to nociceptive  (CO2) trigeminal stimuli 
in MWA
MWA showed stronger responses to left-sided trigemi-
nal stimulations, P3 amplitudes constituted a good dis-
criminant between groups. Previous studies also showed 
hypersensitivity to different types of noxious stimuli 
in migraine patients [15, 45–47], which could be partly 
driven by MWA.

Theta oscillations were mostly increased in MWA dur-
ing  CO2 responses. As time–frequency analysis deciphers 

non-phase locked activity, it is not surprising that these 
additional group differences appear. Intranasal trigeminal 
stimulation usually leads to an increase of low frequency 
oscillations [27]. Thus, the theta band pattern might con-
firm MWA hypersensitivity to trigeminal stimuli. Expec-
tations regarding the trigeminal stimulus may explain 
differences in delta oscillations between nostril sides. 
Indeed, this was not counterbalanced across patients, the 
left nostril being always stimulated first. Thus, the over-
sensitivity to CO2L might have been partly compensated 
during CO2R by some improvement in pain expectation. 
Other explanations may be the impact of  CO2 stimula-
tion side on the brain structures involved [48], and a 
strong lateralization of the pain processing on the right 
hemisphere [49–51].

The right-sided trigeminal response led to higher neu-
ral activity in MWA for pain network structures [49, 52, 
53] that participate to pain intensity perception, and the 
postcentral gyrus is one of the sources for pain ERP [52]. 
A similar result is also suggested [46] that while compar-
ing MWA with healthy controls, a painful heat stimu-
lus induced hyperactivity of the somatosensory cortex. 
Other studies in a mixed migraine population report a 
hypo-activity [54, 55]. This discrepancy points at a differ-
ential trigeminal processing between MWA and MWoA 
and the importance of studying them separately.

The reported structures were differentially activated 
during a time period including mostly cognitive aspects 
[39], some are involved in catastrophization, expectations 
[49, 52, 53], learning and attention towards pain [56, 57]. 
In healthy subjects, intranasal trigeminal stimulation 
involves visual-associative areas [58]. Here, the right pre-
central gyrus and the right calcarine sulcus were more 
recruited in MWA. Participants were requested to avoid 

Table 2 Time–frequency windows in the low frequencies that are significantly different between MWA and MWoA

These time–frequency windows are numbered for practical aim (i.e. TF-1…TF-11) and refer to the Fig. 3. The limits of the windows are described (x and y limits); 
the lower P values (P min) of these windows were extracted with corresponding T values, x and y  (xPmin and  yPmin), power value in each patient group and t-test 
directionality

TF window x limits (s) y limits (Hz) P min T value xPmin (s) yPmin (Hz) Power (MWA/MWoA) Directionality

TF-1 0–1.78 0.3–1.99 0.004 -2.89 0.011 0.9 2.75/2.03 MWA > MWoA

TF-2 0.14–0.72 2.72–5.20  < 0.001 -3.68 0.436 4.2 2.43/0 MWA > MWoA

TF-3 1.05–1.38 3.94–5.36 0.016 2.41 1.221 4.8 -0.62/0.70 MWA < MWoA

TF-4 0.50–1.18 1.07–2.78 0.023 2.28 0.809 1.8 2.27/4.35 MWA < MWoA

TF-5 0.53–0.64 6.77–8.82 0.039 0.04 0.592 7.8 1.22/-0.11 MWA > MWoA

TF-6 0.32–0.52 6.45–8.63 0.023 -2.28 0.426 7.5 0.78/-0.30 MWA > MWoA

TF-7 0.74–1.52 1.25–2.55 0.010 -2.51 1.092 1.8 3.77/1.66 MWA > MWoA

TF-8 0–0.66 0.72–1.57 0.004 -2.84 0.039 1.2 2.49/1.90 MWA > MWoA

TF-9 0.17–0.32 3.53–4.26 0.03 -2.15 0.266 3.9 1.43/0.22 MWA > MWoA

TF10 0.42–1.44 1.60–2.70  < 0.001 -3.37 1.065 2.1 3.31/0.33 MWA > MWoA

TF-11 1–1.37 5.20–7.66 0.004 -2.92 1.180 6.3 0.77/-0.63 MWA > MWoA
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blinking as much as possible, however, the trigeminal 
nerve includes an ophthalmic branch leading intranasal 
trigeminal stimuli to trigger blinking reflexes. Although 
only epochs clean of eye artefacts were considered, MWA 
may have engaged more a visual-associative network to 
refrain blinking.

Altogether, these results suggest hypersensitivity 
and attentional bias toward painful stimuli in MWA 
with a possible increment in pain anticipation and 
catastrophizing.

Differential olfactory processing between MWA and MWoA
MWA had a lower olfactory detection ability. In line with 
this, in a larger population, migraine patients have higher 
olfactory perception thresholds [59], MWA present a 
lower olfactory sensitivity compared to MWoA, but a 
better odor discrimination [60] and a similar identifica-
tion ability [61].

P2 and P3 peaks for left-sided olfactory stimulation 
were larger for MWA, they had more low-frequency oscil-
lations for both sides. An olfactory ERP would normally 
appear in the low frequencies (< 15  Hz) in healthy sub-
jects [27]. Another study showed decreased ERP ampli-
tudes to olfactory stimuli for migraine patients compared 
to healthy subjects [15]. Altogether, these results suggest 
an impairment of the olfactory brain processing in MWA, 
with a higher amount of low-frequency oscillations and 
larger cognitive peaks that might reflect their lower sensi-
tivity and higher discrimination.

The response to olfactory stimulations resulted in a 
lower neural activity in MWA in several brain regions, 
and most of these structures do not belong to the pri-
mary olfactory cortex. Some appear to be functionally 
connected to the frontal or temporal part of the piriform 
cortex and might be involved in planning motor actions 
in response to odors and sneezing [62]. In addition, some 
are involved in cognitive aspects of olfaction: learning 
and memory [63], familiarity [64], attention and pleas-
antness judgements [63, 65, 66]. These differences were 
present during a time period referring usually to cogni-
tive aspects of the processing [39].

Altogether, MWA seem to have a bigger deficit in 
engaging secondary olfactory-related structures, leading 
to distorted attention and judgements towards odors.

Overlap between trigeminal and olfactory systems
All stimuli elicited differential brain oscillations between 
MWA and MWoA. In addition, patients who are consid-
ered osmophobic when answering yes at “can odors trig-
ger a migraine attack?” had some higher peak amplitudes 
for olfactory and trigeminal stimuli.

The interaction between the olfactory and the trigemi-
nal system might explain these results. In daily life, most 

odors are a mixture of olfactory and trigeminal com-
pounds [25], activating both pathways [67] and the pain 
network [68, 69]. On one hand, patients with migraine 
exhibit an olfactory bulb atrophy, especially osmopho-
bic patients with a left-sided pronounced deficit [70, 71]. 
Additionally, MWA are found to be more prone to osmo-
phobia during attacks [7, 72] and odors are more offen-
sive to them [7] compared to MWoA; although some 
studies suggest the opposite [10, 73]. Hence, it is legiti-
mate to wonder whether the olfactory bulb atrophy is 
more common in MWA or MWoA.

Some trigeminal ganglion cells send axons to the olfac-
tory bulb [74] and the theta/delta frequency bands reflect 
activity from the spinal trigeminal nucleus [58]. Thus, it is 
likely that the hypersensitivity to trigeminal stimuli found 
in MWA originates from the spinal trigeminal nucleus 
and modifies the olfactory bulb oscillations. However, 
further research is necessary based on the impact of the 
olfactory bulb oscillations on further structures in the 
olfactory pathway in rodents [75]. This could explain 
alternatively differences in olfactory oscillations between 
groups.

Further central processing may also be involved [17, 
76]. Migraine has been suggested as a cerebral “connec-
topathy” with increased activity in the so-called neu-
rolimbic-pain network and higher connectivity between 
cortical nodes involved in pain in MWoA [77], originat-
ing partly from limbic structures and the thalamus [54, 
78–80]. Thus, some differences in olfactory and trigemi-
nal processing between groups might originate from dif-
ferential brain oscillations abnormality in these networks.

We hypothesize that for MWA, the olfactory aspect of 
bimodal odors would not be properly integrated which 
1) would lead to, or 2) would be due to an exaggerated 
trigeminal processing. This could possibly arise from 
abnormal oscillations at the level of one of the overlap-
ping brain structures.

Limitations and perspectives
The present sample size was relatively small. However, 
this was based on previous reports with EEG assessments 
of odor stimulations [15, 27–30]. The source reconstruc-
tion results presented here are uncorrected. Secondly, 
the differences between groups found for the odor and 
trigeminal stimuli were not consistent between sides 
of stimulation. Whether our results are due to a lateral-
ized olfactory bulb atrophy is a topic for future research. 
In addition, data were collected during the Covid-19 
pandemic. It has been shown that Covid-19 can induce 
temporary, or sometimes complete smell loss [81]. In 
addition, during lockdown, smells were precipitating 
factors of migraine attacks even more than before the 
pandemic [82, 83], and higher post-infection olfactory 
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symptoms were found in migraine Covid-19 survivors as 
compared to non-migraine survivors [84]. None of the 
patients included here had Covid-19, or had recovered 
from Covid-19 in the two weeks prior to testing. How-
ever, the past infection status was not recorded. Although 
all the patients were normosmics, having this informa-
tion would have been useful, especially to assess whether 
some differences between MWA and MWoA occur in this 
regard. Due to methodological constraints, the order of 
stimulation delivery was not counterbalanced. If not han-
dled carefully, repeated odorous or trigeminal exposure 
can induce habituation, even in patients with migraine 
[85]. Consequently, ERP amplitudes can decrease over 
time. This is however unlikely here as the nostril side had 
an opposite effect on the results depending on the stimu-
lation type. Another limitation is that for ethical reasons, 
the patients were allowed to take acute medication, but 
also migraine prophylactic treatment (for more detail, 
see Additional file 4). We did not actively ask them if they 
took some acute medication on the day of the appoint-
ment. It is however unlikely as none of the patients who 
took part in the study had migraine attacks the day before 
or the day after the EEG assessment. The two experiment-
ers collecting data had also access to the patient’s status 
(MWA or MWoA). Finally, the present study did not 
include a control group, however previous studies have 
shown higher olfactory ERP responses and lower trigemi-
nal ERP responses in healthy participants as compared 
with migraine patients [15]. This provides some insights 
regarding how healthy controls process these stimuli.

Conclusions
During trigeminal nociceptive stimulation, depending on 
the nostril side, patients with migraine with aura show 
pronounced hyperactivity in cerebral pain network struc-
tures as compared to patients without. Different olfactory 
oscillations are also found, with differences of activation 
patterns in structures especially involved in pain-related, 
visual related and secondary olfactory structures. The 
overlap between nociception and olfaction provides a 
clue to understand why patients with migraine with aura 
appear more clinically impaired than patients without, 
as some structures shared by both sensory systems show 
differential activity patterns.
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