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Introduction 

Olfactory system 

Humans use multiple senses to navigate around in life, among which the sense of smell is 

probably the most underrated and least explored one. Humans could perceive millions of 

odors, which are typically bimodal in nature, activating the olfactory and trigeminal systems.  

The sense of smell or olfaction is important and humans rely on it in many ways. In general, 

there are three main functions of olfactory system: control of foods, avoidance of environmental 

hazards and social communication (Croy et al., 2012).  

The sense of smell is important for eating and drinking. More than 50% of people with olfactory 

loss report loss of appetite (Mullol et al., 2020). Olfaction is important for food flavoring, which 

is a combined sensation of retronasal olfaction, orthonasal olfaction, taste and 

somatosensation. During the mastication process, odors from food we eat is released in the 

oral cavity and reaches the olfactory receptor neurons through the retronasal passage, the 

pharynx. Therefore, studies report effects of olfactory dysfunction on eating behavior, appetite 

regulation, and effect on weight as well. Olfactory dysfunction leads to a change in dietary 

habits, as patients tend to compensate their problem and make the food more palatable by 

adding sweeteners, salt or spices to improve their food taste by gustatory or trigeminal 

information. Foraging behavior in many mammals to detect their food has been shown to 

depend strongly on the olfactory system (Yeomans, 2006). Humans rarely use olfaction to 

detect distant food however, we have the capacity to follow scent trails and it has been shown 

to improve with practice (J. Porter et al., 2007).  

Odor contribute to hazard avoidance. In the environment there exists a range of volatile 

chemicals signaling presence of pathogens, predators or kin (Ajmani et al., 2016). 

Environmental hazards entail microbial and non-microbial sources. People with smell loss 

report more household accidents (White and Cunningham 2017), gas leaks and smoke (Miwa 

et al., 2001). People with olfactory dysfunctions significantly report detection of non-food 

hazards.  

Lastly, olfaction mediates social communication. Odors do have an important role in kin 

recognition (R. H. Porter, 1998). Human body odors are important for chemical communication 

and have a major role in developing mother child relationship or for newborns to identify nipples 

of mothers for feeding. Body odors also help in mediating attractiveness perception (Herz and 

Inzlicht 2002), developing romantic relationships and in selection of mating partners (White 

and Cunningham 2017). Research shows that body odors convey information about sickness, 

emotions as well as traits such as gender and individuality (Groot et al. 2017). Sick humans 

frequently emit odors that are different and often unpleasant from those emitted by healthy 
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individuals (Olsson et al., 2014). Another study showed that humans could detect fear- related 

cues. Results from this study suggest that female participants were able to identify sweat 

samples from fearful donors, suggesting detection and evaluation of stimuli under some 

circumstances (Ackerl et al., 2002). Most social interactions also involve act of eating or 

drinking where impaired sense of smell would influence eating behavior, limiting one’s ability 

to detect rotten or spoiled food (Ackerl et al., 2002; Santos et al., 2004).   

Odors are said to influence mood, evoke long forgotten memories, evoke powerful experiences 

of pleasure or displeasure, produce alertness or relaxation (Kontaris et al., 2020). Research 

suggests a role of odors in human sexual behavior, maintaining hygiene, familiarity along with 

a source of comfort (Hierl et al., 2021). Odors are directly linked to positive or negative 

emotions (Walliczek-Dworschak & Hummel, 2017). It is very well known that odors even when 

received unconsciously can modulate mood and emotion (De Luca & Botelho, 2021). An 

unpleasant odor induces negative mood, whereas presence of pleasant odors has been 

associated to reduce anxiety, release stress and improve sleep (Villemure et al., 2006). Odors 

can also evoke relaxation or anxiety depending on past associations (Krusemark et al., 2013). 

For example, odors can evoke panic or fear in patients with post-traumatic stress disorder, 

while maternal odors reduce crying in infants (Sullivan & Toubas, 1998). Therefore, we can 

say that odors have a direct link in modulating mood, emotions, cognition, and behavior.  

The trigeminal system is an additional chemosensory system, apart from olfaction and 

gustation. The olfactory and trigeminal systems share a close relationship. Most odors also 

stimulate the trigeminal nerve (Doty, 1975; Doty et al., 1978). Trigeminal chemosensory 

system mediates the perception of sensations such as cooling, freshness, pain, stinging, warm 

and burning (Frasnelli et al., 2011; Laska et al., 1997; Wysocki et al., 2003). CO2 is an example 

of a pure trigeminal odor whereas odors such as menthol and mustard oil are bimodal in nature 

leading to the combined activation of the olfactory and trigeminal systems. Odors when present 

in higher concentration can also produce trigeminal sensations (Frasnelli et al., 2011).  

Olfactory dysfunction 

Approximately 20-25% of general population is affected by olfactory deficits, with higher 

prevalence in older people (Landis, 2004; Murphy et al., 2002). Apart from aging major causes 

of olfactory loss include head injuries, sinonasal diseases, upper respiratory infection and 

neurodegeneration (Damm et al., 2004; Temmel et al., 2002). Olfactory loss is gaining 

attention with it being an early and clinical biomarker of people with neurodegenerative 

diseases (Fullard et al., 2017). For some individuals olfactory loss has a direct effect on our 

quality of life and mental health whereas for others it remains unnoticed. Depression and 

olfactory dysfunction affect individuals and these can have a major impact on patient’s social 

skills, relationships, well-being and overall quality of life (Doty, 2009; Sivertsen et al., 2015). 
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Approximately one in 10,000 individual is born without an olfactory sense known as congenital 

anosmia (Alotaibi et al., 2022). These people are born with lifelong absence of olfactory 

perception and aplasia or hypoplasia of olfactory bulb; the first cerebral region of the olfactory 

pathway (Abolmaali et al., 2002). In contrast, people with specific anosmia only have the 

inability to perceive a specific odor. It is a non-pathological phenomenon (Croy et al., 2015). 

Hyposmia (13-18 %) explains the reduced ability to perceive certain odorants and anosmia 

explains the lack of olfactory function. Coronavirus, responsible for COVID-19 pandemic is one 

recent cause of smell and taste loss in a large fraction of patients. Chemosensory deficits being 

the earliest and sometimes the only sign in this viral infection (Butowt & von Bartheld, 2021). 

In addition to the obvious olfactory symptoms, loss of olfactory function also reduces trigeminal 

functions (Frasnelli et al., 2010, 2011; V. Gudziol et al., 2001).  

Anatomy of olfactory system 

Consciously or unconsciously, we can perceive millions of odors. The nasal cavity harbours 

the olfactory mucous membrane. Odorant molecules first encounter receptors that are present 

on the cilia of olfactory sensory neurons (OSNs). Each neuron expresses a single type of 

receptor protein on the dendrites. However, individual odorants can bind to different receptor 

proteins. The axons of individual OSNs combine to form neurovascular bundles. These 

bundles of axons form the olfactory nerves (T. D. Smith & Bhatnagar, 2019). Axonal projections 

of these olfactory nerves synapse with the dendrites of mitral and tufted cells in glomeruli which 

are found in the OB. The OB is the first central processing region of the olfactory system 

(representation in coronal brain scan in figure 1), involved in a list of olfactory tasks including 

odor discrimination (Wilson & Sullivan, 2011). Incoming olfactory information further transfers 

to the primary olfactory regions including the anterior olfactory nucleus, amygdala, anterior and 

posterior piriform cortex and entorhinal cortex (Cleland & Linster, 2019). The piriform cortex is 

the largest recipient of bulbar projections. It lies along the olfactory tract at the junction of 

temporal and frontal lobes and continues onto the dorsomedial aspect of the temporal lobe 

(Anderson et al., 2003; Gottfried, 2010a; Poo & Isaacson, 2011; Wilson & Sullivan, 2011). 

Activity in the piriform cortex is modulated by odor dimensions such as   odor identification, 

pleasantness, intensity, quality (Li et al., 2020) as well as cognitive processing (Bensafi et al., 

2007). Information further projects to the secondary olfactory regions including orbitofrontal 

cortex (OFC), insular cortex, thalamus and hypothalamus (Haberly, 1998) (representation of 

human olfactory system presented in figure 2).  

Odors regulate mood and emotions. Both regions of olfactory cortex such as olfactory tubercle 

and regions of secondary olfactory pathways such as OFC, insular cortex, hippocampus are 

involved in emotional and memory regulation. Amygdala is another region involved in 

emotional processing. Research suggests enhanced functional connectivity between 

amygdala and olfactory cortex (Krusemark et al., 2013). The connection between mood and 
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olfaction is neuro-functionally sustained by an overlap between olfaction and emotional areas 

such as the amygdala, insula, OFC, and cingulate cortex (Gottfried, Deichmann, et al., 2002; 

Gottfried, O’Doherty, et al., 2002). When perceiving odors the insular cortex, part  of the 

secondary olfactory cortex, was found to be associated with improved emotional awareness 

or assessment of emotional status (Paulus & Stein, 2006; Soudry et al., 2011). Another region 

of the secondary olfactory cortex, the OFC, also activates when odors influence cognitive, 

social and emotional processing (Hooker et al., 2006). Activation of the OFC is also associated 

with the pleasantness of stimuli. Part of it is involved in the processing of reward value and 

affective aspects of olfactory stimuli (O’Doherty et al., 2000).  

Perception of selective olfactory stimuli lead to activation in the medial OFC, amygdala, 

parahippocampal gyrus and cerebellum. Whereas a pure trigeminal stimulus, activates brain 

stem, reward processing thalamus, caudate nucleus, OFC, cingulate gyrus, post central gyrus, 

medial frontal gyrus, superior temporal gyrus and frontal operculum. Functional overlap 

between olfactory and trigeminal regions has been observed in the piriform cortex, insular 

regions, medial OFC and in the secondary somatosensory cortex (Albrecht et al., 2010; Boyle 

et al., 2007; Hummel et al., 2009). In recent years, brain-imaging techniques such as positron 

emission topography (PET), functional magnetic resonance imaging (fMRI) has given insights 

into the processing of sensory information. Investigations of the trigeminal system rely 

predominantly on psychophysical or electrophysiological methods. Overlap in the brain 

structures mediating functional processing of olfactory and trigeminal systems has been found 

(Boyle et al., 2007; Hummel & Nordin, 2005) . 

           

Figure 1- Olfactory bulb labelling. Coronal plane acquired perpendicular to sagittal plane to visualize 

olfactory bulb. Yellow boxed represent position of right and left OBs. 
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Figure 2- Schematic representation of human olfactory system. Areas in blue present primary olfactory 

regions; green regions represent secondary regions; purple represent tertiary regions, the dots 

represent binding of odors to olfactory receptors. Figure adapted from - (Saive et al., 2014, figure 1) 

 

Chemosensory assessment 

Psychophysical olfactory tests  

When investigating olfactory dysfunction, the most important part is a detailed medical history. 

Duration of dysfunction, nature of impairments, medications should all be considered. ENT 

examination should also include nasal endoscopy. In special cases of idiopathic olfactory 

dysfunction, the patient is referred to a neurologist. When the dysfunction is suspected to be 

congenital, MRI is recommended. Two commonly used olfactory assessments worldwide are 

the 40- item University of Pennsylvania Smell Identification test (UPSIT) and the Sniffin’ Sticks 

test. UPSIT (Doty et al., 1984) is a forced choice test kit used widely in North America with 

screening time of 10- 15 minutes. UPSIT comprises four booklets, each containing 10 stimuli 

to smell. It can be self- administered which uses microencapsulated odorants released by 

scratching. For identification of each stimulus, an individual chooses one of the four options 

provided. In addition to odor identification test, to get a clearer scenario, Cain and Rabin (Cain 

& Rabin, 1989) developed the Chemosensory Clinical Research Center test (CCCRC) that 

paired odor threshold component with odor identification to better evaluate olfactory function. 

Threshold testing was done by squeezing and sniffing the bottles using the method of 

ascending limits (Doty et al., 1996). UPSIT and CCCRC are used widely in the USA. Sniffin’ 

Sticks is another extensive screening test used widely in Europe. It is a test battery utilizing 

felt-tip pens filled with odorants (Hummel et al., 2011). It is a forced choice screening consisting 

of three sub-sets: identification, discrimination and threshold testing. Testing starts with the 

threshold which is a staircase test procedure of 16 triplet pen sets. Test is prepared by diluting 
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the gradient odor to distinguish one pen that differs from the two odorless pens (blank). Score 

of threshold testing determines the lowest detectable odor concentration. Threshold test is 

available for n-butanol (cheese-like, harsh, alcoholic and sweet odor) or 2-phenylethanol (rose-

like, flowery odor). Followed by it is another triple forced choice test of 16 sets known as 

discrimination test. Subject must identify one odor that is different from the other two. It is 

followed by 16-item identification test where the subject is asked to choose one of the four 

options displayed on a flash card. The total score allows to classify subjects as normosmic, 

hyposmic and anosmic (Oleszkiewicz et al., 2019a). In all our publications, Sniffin’ Sticks kit 

was included to assess subject’s olfactory sensitivity. If scoring is ≤ 16 points, subjects are 

declared anosmic; if scoring is between 16.25 and 30.5 points, subjects are declared 

hyposmic; and if scoring is between 30.75 and 48, subjects are declared normosmic. While 

testing the subject it is necessary that tests are conducted in a well-ventilated room. Examiners 

should wear gloves to avoid contamination as well as patients should not eat or drink 15 

minutes prior to the experiment. Time gap of 3 minutes should be maintained between the sub-

tests. 

Psychophysical Trigeminal tests 

Most odorants stimulate the olfactory and the trigeminal nerve (Doty et al. 1978; Wysocki et al. 

2003). Lateralization task is one of the most used trigeminal tests. Trigeminal function is 

quantified by individual’s ability to localize stimuli presented to either left or right nostril. Even 

patients with olfactory loss have persistent but reduced trigeminally mediated sensitivity. 

However, anosmic subjects show significantly reduced trigeminal sensitivity when compared 

to healthy controls (Hummel et al., 2003; Kendal-Reed et al., 2001; Walker et al., 2001). Neat 

99% eucalyptol is used for the odor lateralization paradigm (Frasnelli, La Buissonnière Ariza, 

et al., 2010; Hummel et al., 2003). The odor is presented to one of the nostrils in a pseudo-

randomized order in squeeze bottles (volume capacity of 250 ml). 30 ml of odorant is filled in 

one of the bottles whereas 30 ml odorless propylene glycol filled in another. Using a hand- 

held squeezing device a puff of approximately 15 ml air is delivered to each of the subject’s 

nostrils. The subject localizes the trigeminal effect or cooling sensation perceived in left or right 

nostrils. A total of 40 stimuli are presented to blindfolded subjects with an interstimulus interval 

of 40 seconds. Stimuli are provided either to the left or right nostril in a pseudorandomized 

order. After each stimulus subjects identify the nostril where trigeminal odorant is presented. 

To save time, a shorter test consisting of only 20 stimuli with a similar pseudorandomized 

design is also used at times, maintaining a interstimuli interval of 40 seconds (Frasnelli & 

Hummel, 2007). Lateralization testing was used in third publication to test trigeminal effect of 

odors perceived.  
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Figure 3- fMRI set up with olfactometer delivering the odors to the subject lying in the scanner (created 

in BioRender.com) 

 

Electrophysiological tests - olfactory event related potentials (OERP) 

Olfactory event-related potentials are a valid electrophysiological technique to study olfactory 

system. It is a result of sequential activation of different brain areas beginning from OB, tracts 

to higher order brain regions like orbitofrontal cortex, insular cortex along with the regions of 

temporal lobe. It is one of the objective ways to measure olfactory function and is independent 

of patient’s response bias. Presence of OERP is a strong indicator of olfactory function 

whereas absence of it will indicate olfactory loss. OERP signals are characterized by three 

main parameters: latency, scalp topography and amplitude. We record waveforms from 

different areas of the scalp. This method is non-invasive and low cost. As compared to MRI, it 

has a much higher temporal resolution but a poor spatial resolution. 

Functional magnetic resonance imaging (fMRI) 

It is another non-invasive medical imaging technique used to image anatomical and 

physiological processes of body (Lin & Monica Way, 2014). MRI provides much greater 

contrast between different tissues as compared to computed tomography. It has a very high 

spatial resolution. Being non- invasive and without radiation exposure, it is used in human 

studies. The human body comprises of 3/4th water. When in presence of magnetic field, MRI 

takes advantage of high prevalence of water in the body that acts as dipole and causes the 

hydrogen atom to align in the direction of the magnetic field. When magnet switches off the 

proton gradually return to their original state in a process known as precession. fMRI detects 
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changes in the blood oxygen level- dependent (BOLD) level which is the indirect measure of 

neural activity. For example, when an unpleasant odor is presented in contrast to odorless air, 

our brain responds to the stimulus leading to deoxyhemoglobin by localized changes in the 

brain blood flow and influx of oxygenated blood coupled by underlying neuronal activity. Using 

MRI, several studies have investigated changes in odor related brain responses in patients 

with olfactory loss. Patients demonstrated widespread decrease of odor induced brain 

activation in the olfactory related regions which include OFC, piriform cortex, amygdala, 

insula (Han et al., 2018; Levy et al., 1999; Moon et al., 2018; Pellegrino et al., 2016). Altered 

odor induced brain responses were seen in patients with neurodegenerative disorders such as 

Parkinson’s disease (Hummel et al., 2010; Takeda et al., 2010). With the help of functional 

imaging we found that olfactory perception is modulated by emotional, memory and cognitive 

processing, known as top-down modulation (Rolls, 2011a).  

For olfactory based fMRI studies, variations in brain activity critically depends on factors such 

as odor selection and stimulation paradigm. For instance, active sniffing or passive odor 

exposure has a major impact on the BOLD signal in the primary olfactory areas (Wang et al., 

2014). MRI has been useful to provide evidence about the functioning and the plasticity of the 

olfactory system. While designing an fMRI study, numerous things should be considered: 

choosing block design or event related design, duration of odor exposure (Han, Zang, et al., 

2020; Pellegrino, Sinding, et al., 2017; Zang et al., 2020) to avoid habituation and mode of 

odor delivery for efficient exposure and to avoid contamination of the administered airstream 

with background odor. 

Publication 1: Assessment of structural plasticity by measuring OB volume  

Little is known about the plastic nature of the OB in humans. Its regenerative property in 

humans is still a topic of debate. A study by Bergmann et al., focusing on the age of OB neurons 

in humans concluded that age of the OB neurons equals the age of an individual and that less 

than 1% of OB neurons are replaced in one’s entire lifetime (Bergmann et al., 2012). However, 

other groups reported indications for major regenerative activity in the OB (Curtis et al. 

2007)(Lötsch et al., 2014).  

Humans have varied OB volumes, which had been hypothesized to depend on synaptic input 

from olfactory receptor neurons (Hinds & McNelly, 1981; Patterson et al., 2015) In healthy 

subjects, OB volume was found to positively correlate with measured olfactory function, and 

decrease with aging (Buschhüter et al., 2008; Hummel et al., 2013; Mazal et al., 2016). OB 

volume varies in subjects with different olfactory pathologies. Hence, the OB volume is of 

clinical importance to gauge olfactory function (Buschhüter et al., 2008). As reported, change 

in its volume correlates well with change in odor threshold and odor identification (Haehner et 

al., 2008). Because assessment of OB volume requires manual delineation, it is time-
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consuming and needs specific training of observers, its measurements are typically not used 

in routine examinations of patients with olfactory loss. This might change with the availability 

of tools allowing reliable but less investigator-biased and faster OB volume measurement. 

Hence, in publication 1 we aimed at introducing a novel method to calculate OB volumes, 

examining 1) test- retest reliability 2) validity comparing the generalized manual segmentation 

approach to the newly developed box- frame approach. 

 

Publication 2: Assessing functional plasticity using bottom- up and top- down olfactory 

processing.  

Stimulation with either odor molecules or olfactory associated non-chemical cues (e.g., 

pictures, words, metaphors) can activate the central olfactory system, representing the bottom-

up and the top-down pathways for olfactory processing. For bottom-up processes, odor 

molecules bind to olfactory receptors before olfactory signals are transmitted via OB and are 

further processed in multiple olfactory related brain regions (e.g. piriform cortex, amygdala, 

OFC, insula, hippocampus, anterior cingulate cortex) (Djordjevic et al., 2005a; Seubert et al., 

2013; Zhou et al., 2019). On the other hand, during top-down processing, absence of the 

physical olfactory stimuli leads to activation in the olfactory networks with the retrieval of 

cognitive information related to an odor  (Rolls, 2011b). These top-down activations involve 

olfactory-related as well as other higher-order brain regions (Arshamian et al., 2013a; 

Djordjevic et al., 2004; González, Barros-Loscertales, Pulvermüller, Meseguer, Sanjuán, 

Belloch, & Ávila, 2006; Pomp et al., 2018b).  

One’s ability to imagine auditory and visual stimuli has been widely studied. However, it is very 

difficult to imagine odors. Still previous research has shown activation in the primary olfactory 

cortex by merely imagining the odors. Piriform cortex was activated by top- down modulating 

factors such as cognitive or neurophysiological processes, influenced by attention or 

expectation or by cross- modal associative learning (Gottfried et al., 2004; Gottfried & Dolan, 

2004). In publication 2, we aimed at investigating the top-down olfactory processing in patients 

with smell loss and healthy controls. Using odor-related words versus control words, we 

hypothesized more activations in the olfactory processing areas in healthy controls and 

subjects with idiopathic olfactory loss as compared to individuals with congenital anosmia. 

Publication 3: Assessing plasticity of chemosensory system 

Adaptation is a major characteristic of the perception of odors (Pellegrino, Sinding, et al., 

2017). Odor habituation is produced by repeated or continuous odor exposure leading to 

decreased peripheral and central responses. Odor habituation is also influenced by top-down 

modulators such as attention (Fallon et al., 2018). In mouse models, decreased electrical and 

BOLD signals were seen in the piriform cortex. It was previously reported that odor adaptation 
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leads to a decrease in piriform activity and increased activity in OFC (Pellegrino, Sinding, et 

al., 2017; Poellinger et al., 2001). Neural adaptation is also persistent to many other levels of 

the olfactory system including OSNs, OB, and piriform cortex (Chaudhury et al., 2010).  

Repeated consumption of certain food items such as capsaicin or mint chewing gums, may 

lead to changes in the way we perceive them.  In our publication 3, we aimed to investigate 

changes in chemosensory systems in response to prolonged exposure to the mixed 

olfactory/trigeminal stimuli (peppermint and spearmint) in frequent and non-frequent gum 

chewers. We hypothesized less habituation in frequent gum chewers when exposed to gum 

related trigeminal odors such as peppermint or spearmint. 

Methods 

Method 1:  

Publication 1- A novel technique for olfactory bulb measurements 

 

Subjects- 

To calculate OB volumes, 52 subjects underwent magnetic resonance imaging (MRI) of the 

brain. All participating subjects visited the Smell and Taste Clinic at the Department of 

Otorhinolaryngology, University Hospital Carl Gustav Carus (Dresden, Germany) and were 

clinically diagnosed with smell loss. The local Ethics Committee approved the study. All 

subjects provided written informed consent and were tested for their orthonasal olfactory 

functioning using the “Sniffin’ Sticks” test battery (Hummel et al., 1997) which comprises three 

olfactory tests: olfactory threshold for phenyl ethyl alcohol (a rose-like odor), odor 

discrimination and odor identification. These tests were used to categorize olfactory loss 

patients as being either functionally anosmic, hyposmic or normosmic (Oleszkiewicz et al., 

2019a). 

MRI acquisition- 

MRI data were acquired on a 3 Tesla scanner (model Prisma; Siemens, Erlangen, Germany). 

For the T2 weighted sequence a 32-channel head coil was used. The scanning parameters 

were: repetition time (TR) = 1500 ms; echo time (TE) = 78 ms; flip angle = 150˚; slice thickness 

= 1mm; field of view matrix = 256 x 320. 

Measurement of OB volume- 

OB volumes (shown in Fig 1B, publication 3) were calculated using two methods. 

Manual segmentation method (MS). AMIRA 3D visualization and modeling system (Visage 

Imaging, Carlsbad, USA) was used to calculate the volume of right and left OB using 
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The plan metric manual contouring (PMC) technique (surface in mm2) (Fig 1A and 1C, 

publication 3). The OB sequence included acquisition of 1 mm thick T2- weighted fast spin 

images, in the coronal plane that covers middle and anterior portions of the skull base. A 

standardized PMC protocol was applied to all scans (Rombaux et al., 2012). Firstly, number 

of slices with clear visibility of the OB were selected. On each successive slice of brain, 

contours on left and right side of OB were manually drawn. The proximal end of the OB was 

defined by the abrupt change in the diameter at the beginning of the olfactory tract (Mueller et 

al., 2005; Rombaux et al., 2012).Two trained observers blind to the diagnosis and clinical 

characteristics of the subjects, calculated the volumes (in mm3). 

Box- frame method (BF). ITK-SNAP (version 3.8.0, University of Pennsylvania & University 

of Utah, www.itksnap.org) (Yushkevich et al., 2006) was used for the alternative calculations 

of OB volumes. 

Firstly, the number of slices with distinct visibility of the OB was noted down. Further, the slice 

having the most visible voxels for both right and left side was chosen as the standard slice (in 

most cases it was the central slice). As the OB shape varies between individuals, we framed 

a box on it as shown in Fig 1A and 1D, publication 3. Annotations were drawn on the standard 

slice using Image annotation tool. With the help of this tool, we calculated the width (w) and 

height (h) by physically drawing a line between two extreme points of OB. For calculation of 

box volume, the length (l) was calculated by selecting the total number of slices which showed 

clear and distinct OB, multiplied by the slice thickness (1mm) (V = l*w*h, in mm3). Two expert 

observers (AJ, XY), blind to the subject’s condition calculated the volumes of right and left 

OB’s. When the difference exceeded 10%, a third expert observer calculated the volumes 

again. After input of the third observer, two closest volumes with less than 10% difference were 

selected. 

The idea for proposing the BF approach was also its usability by non-experts in neuroimaging. 

Accordingly, we checked its performance by non- expert observers who belonged to a different 

background with no imaging experience. They were well explained how the technique works 

and were asked to do the measurements in all of the subject population. Following the same 

rules, when the difference exceeded 10%, a third non-expert observer calculated the volumes 

again. 

Out of the total 52 subjects, five subjects were excluded due to unclear OBs and lack of 

subject’s information and finally, volumes of 47 subjects were analyzed and compared for left 

and right OB volumes. Out of them, 36 subjects had reduced olfactory functioning due to an 

infection in the upper respiratory tract (URTI), eight were diagnosed with idiopathic olfactory 

loss (ID) and three had congenital anosmia. 
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Statistics- 

The Statistical Package for Social Sciences version 25.0 (IBM SPSS 25.0, Chicago, IL, USA) 

was used for statistical analysis. Table 1, publication 3 shows the characteristic information for 

all subjects (means ± SD). A paired t-test was done to compare volumes of right and left OB 

as calculated by observers 1 and 2 using both methods. Furthermore, using Pearson 

correlation, inter-observer reliability was investigated for the volumes calculated by MS 

(AMIRA) and BF (ITK-SNAP) method. The level of significance was set at 0.05. 

 

Method 2 

Publication 2- Neural processing of olfactory‑related words in subjects with congenital and 

acquired olfactory dysfunction 

Participants- 

Participants were recruited from the residents of Dresden area (control participants) and the 

Smell and Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav 

Carus, Dresden (patients). All participants received the “Sniffin’ Sticks” olfactory test (Hummel 

et al., 1997). A composite odor threshold, odor discrimination and odor identification score (TDI 

score) was used to classify normal olfaction (TDI > 30.5) and anosmia (TDI < 16.5). In order 

to ascertain anosmia in congenital anosmia (CA) patients, olfactory event related potentials 

recordings were done, and in none of the patient’s olfactory event related potentials were 

detected (Frasnelli et al., 2007). CA subjects were diagnosed with lack or hypoplasia of 

olfactory bulb and a life-long olfactory dysfunction without other known etiology. Patients with 

idiopathic anosmia (IA) were those patients with no cause for their olfactory dysfunction found 

after detailed clinical investigations (including medial history questionnaires, psychophysical 

olfactory testing, olfactory pathways morphology assessment) (Rombaux et al., 2006). In 

addition, participants completed the German version of Beck Inventory [ranging from normal 

state (1–10) to extreme depression (over 40)] (Beck et al., 1996) and the Montreal Cognitive 

assessment (ranging from 0 to 30) (T. Smith et al., 2007) for assessing the level of depression 

and executive functions, respectively. 

Forty participants took part in the study. Of those, eighteen were control participants with 

normal olfaction (NC) (mean age 49.2 years; SD 12.2; 10 females), 14 were patients with 

congenital anosmia (CA, mean age 37.4 years, SD 18.9; 7 females) and eight patients with 

idiopathic anosmia (IA, mean age 56.4 years; SD 10.8; 4 females, disease duration ranging 

between 9 and 108 months). The study was approved by the Ethics committee at the medical 

faculty of the Technical University of Dresden. The experiment was conducted according to 

the Helsinki declaration. All participants provided written informed consent. 
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Study design- 

 For our experimental design, 36 words with strong olfactory association (OW) and 36 words 

with little or no olfactory association i.e. control words (CW) were presented to the participants 

lying in the scanner. Apart from the 24 new words as displayed in Table 1 (publication 2) for 

convenience of later analysis some words were randomly repeated to have a block time of 

20 s each. 

We chose the words with higher olfactory association as reported by (Han, Croy, et al., 2020). 

Briefly, 50 words with olfactory association and 50 words with little or no olfactory association 

were screened and rated by experts. Through a pilot study, 18 normosmics were asked to rate 

the randomly presented OW and CW words for the degree of olfactory association using a 

numerical scale ranging from 0 to 5. Combining the ratings from expert selection, CW had a 

mean score of 0.4 (SD 0.3) whereas OW had a mean rating score of 3.2 [(SD 0.9); t (17) = 

13.5, p < 0.001](Han, Croy, et al., 2020). 

The participants were instructed to covertly read the instructions and words. Cueing prior to 

word blocks was adopted to guide participants to (1) focus on the olfactory aspects of the 

displayed words (2) induce an expectation for the following words; and (3) to clearly separate 

the OW from the CW blocks. Olfactory related semantic differences were chosen as a criterion 

to differentiate between conditional activation. However, no control on the word frequency was 

marked on. The word length (e.g. number of characters in each word) was taken into 

consideration during selection; however, no statistical analysis was performed on this. 

Specifically, the experimental run contained 24 blocks in total with 12 blocks each of OW and 

CW; displayed in an alternating pattern. For each block, the expectation was induced with a 

slide showing for 2.5 s with the term ‘Words with smell’ (German: ‘Wörter mit Duft’) or “Words 

with no smell” (German: ‘Wörter ohne Duft’) followed by a 1-s fixation cross, making the 

expectation task for 3.5 s. The reading phase included three OW or CW presented for 2.5 s 

each, with 1-s intervals between words, making the reading task for 10.5 s. During inter-block 

intervals, a fixed cross was shown for 6 s. Each block was of 20 s. The order of the words 

within each block was randomized among participants. In the complete experiment, we had 36 

OW + 36 CW words in total scan time of 480 s = 8 min ((12 + 12) × 20 s/block). A simplified 

diagram of the fMRI design is depicted in Fig. 1 (publication 1). 

Imaging data acquisition and preprocessing- 

Functional and structural brain images were acquired on a 3-T MRI scanner (Siemens Prisma, 

Erlangen, Germany) equipped with an 8-channel head coil. A total of 220 functional images 

were collected per individual using a T2 single-shot echo-planar imaging (EPI) sequence: TR 

= 2000 ms, TE = 40 ms, 90° flip angle13, voxel size 3 × 3 × 3.75 mm, no interslice gap, 192 × 

192 mm field of view. A high-resolution structural T1 image was acquired using a 3D 
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magnetization prepared gradient rapid acquisition gradient echo (MPRAGE) sequence (TR = 

2530 ms, TE = 2.34 ms, 256 × 256 mm field of view, voxel size 1 × 1 × 1 mm). 

SPM12 (statistical parametric mapping) was used to analyze the functional MRI data, which is 

a MATLAB (The Mathworks Inc., Natick, MA, USA) based software from Welcome Trust Centre 

for Neuroimaging, London, UK. Default settings were used for pre-processing of data 

including-realignment, unwarping, co-registration, segmentation, smoothing and 

normalization. For all the subjects, head movement artifacts were further removed using 

ArtRepair software (version 4, Stanford University) (Pomp et al., 2018a), after which 

neuroimaging data of one control subject was discarded due to excessive movement. In the 

end, data set included functional images of 14 CA, 8 IA and 16 NC participants.  

fMRI analysis- 

On the single-subject level, the conditions for OW expect and OW read were calculated as 

follows: OW expect = (OW − NW) expect, and OW read = (OW − NW) read. Further, on the 

group level the contrast images from everyone were subjected to a random effect analysis to 

test specific research questions: (1) one-way ANOVA analysis was used to test between-group 

differences regarding OW expect; (2) the one-way ANOVA analysis was used to test between-

group differences regarding OW read. Age, sex, and BDI scores were controlled in the models 

in the SPM 2nd level model. Significant brain activation was searched on the whole-brain level. 

To control for multiple statistical testing within the entire brain, we maintained a cluster-level 

false-positive detection rate at p < 0.05 using an initial voxel-level threshold of p < 0.001 with 

a cluster extent (k) empirically determined by Monte Carlo simulations (n = 1,000 iterations), 

by means of AlphaSim procedure (Forman et al., 1995). This was done using the REST toolbox 

(https://www.restfmri.net/forum/REST_V1.7) (Song et al., 2011). A minimum cluster size 

(number of contiguous voxels) was determined for each specific contrast to achieve a cluster-

level Family-Wise Error corrected p < 0.05, and were reported as part of the results. Significant 

brain regions were labelled and reported with the AAL toolbox (Tzourio-Mazoyer et al., 2002) 

. The activation levels (contrast estimates) in significant clusters were plotted for each group 

(NC, IA, CA) using the plot function in SPM. 

Statistical analyses for behavioral data- 

Behavioral and socio-demographic measurements (“Sniffin’ Sticks” test score; BDI score; 

MCAT score) were analyzed using IBM SPSS version 2.4 (SPSS Inc., USA, Chicago) using 

one-way ANOVA, including age and sex as co-variables of no interest. The significance level 

for all the statistical tests was set at p < 0.05 unless specified. Results are represented as 

means ± standard deviation (SD). 
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Method 3: 

Publication 3- Habitual Exposure to Trigeminal Stimuli and Its Effects on the processing of 

Chemosensory Stimuli 

Participants- 

Forty healthy subjects (m = 22, f = 18) with a mean age 25 ± 3 years (age range 18–40 years) 

were recruited in the study. Subjects received a structured medical history (Welge-Luessen et 

al., 2013), which, among others, included questions on demographics, smoking and drinking 

habits, medications, current disorders, family history of any neurodegenerative disease and 

general nasal health status. GC and N’GC subjects were identified based on a questionnaire 

asking about their mint consumption patterns. Subjects in the GC group (n = 20) chewed gums 

at least twice a day; used mint toothpaste, consumed peppermint tea or related foods 

frequently. N’GC (n = 20) consumed little or no chewing gums, mint toothpaste or any other 

mint related food items. 

All subjects reported a normal sense of smell, which was ascertained using an odor 

identification test (with maximum score of 16) from the ‘‘Sniffin’ Sticks” olfactory test battery 

(Oleszkiewicz et al., 2019b). This test is performed within a forced choice paradigm where 

subjects have to identify 16 odors at supra- threshold concentrations using flash cards with 

four descriptors each (Cain & Rabin, 1989; Kobal et al., 1996). Participants reached an 

average score of 13.6 ± 1.4 (mean ± SD). The experiments were conducted according to the 

Helsinki declaration. The ethics committee at the medical faculty of the Technical University of 

Dresden approved the study design. Subjects were recruited by putting flyers on campus. They 

provided written informed consent. 

Study design- 

Subjects were pretested for odor identification score, followed by threshold testing and 

lateralization test. After checking for their normal olfactory and trigeminal sensitivity subject’s 

underwent fMRI scanning. During fMRI measurements, odorous stimuli were presented using 

a portable and computer-controlled olfactometer (Sommer et al., 2012), embedded in a 2 L/ 

min constant airflow. Each functional run was comprised of 11 OFF or ‘‘baseline” blocks and 

10 ON blocks. From the main block design (Fig. 1, publication 2), 10 blocks of ON and OFF 

phases were analyzed to increase stimulus related BOLD signals. 

Odors delivered intranasal during the ON session for 8 seconds and odorless air for 12 

seconds during the OFF session. Each subject underwent four functional runs with one type 

of odor presented in one run. Across subjects, the sequence of these runs was randomized 

using a Latin Square. After each run, subjects were asked to rate the intensity and 

pleasantness for the odor presented. The intensity scale ranged from zero (unnoticeable) to 

10 (very strong) and pleasantness ranged from zero (extremely unpleasant) to 10 (extremely 
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pleasant) with five being neutral. Subjects communicated orally through the scanner intercom 

system. 

Odor stimuli- 

We selected four odors for testing (provided by Takasago, Paris, France): Peppermint (order 

number ABX321352), Spearmint (ABX321351A), Strawberry (ABX321354A), and Cherry 

(ABX321603). These odors resemble flavors used in chewing gum. Peppermint and spearmint 

are minty, majorly trigeminal odors, whereas cherry and strawberry are non-minty, olfactory 

odors. 

Psychophysical testing- 

In the pilot study, intensities of all the presented stimuli were checked using visual analog 

scales so that they were perceived as isointense (F [3, 76] = 2.11, p = 0.10). Pure odors with 

no dilution were used. The isointense levels of odors were used for the lateralization task 

(Frasnelli et al., 2011; Hummel et al., 2003) which was performed to gauge trigeminal 

sensitivity for the 4 odors used. 

In addition, odor thresholds were obtained for each of the four odors. Participants were 

repeatedly exposed to high and low odor concentrations (score range 1–8) (Laing & Doty, 

2003). Subjects receive triplets of odors presented in glass bottles (4 ml liquid odor; bottles 

with 50 ml volume, diameter of opening 4 cm) and have to discriminate one bottle with odorous 

solution from two others containing the diluent propylene glycol (Sigma-Aldrich, Deisenhofen 

Germany; order number 398039). This test was done to identify the least distinguishable 

concentrations for each of the four odors used (Croy et al., 2009). All performed tests were 

based on a forced choice paradigm. 

fMRI data acquisition and analysis- 

Functional brain images were acquired on a 3-T MRI scanner (Siemens Verio, Erlangen, 

Germany) using a 32- channel head coil. 248 functional images were collected per individual 

using a T2 single-shot echo-planar imaging (EPI) sequence: TR = 869 ms, TE = 38 ms, 58˚ 

flip angle, no interslice gap, 210 x 210 mm field of view. A high-resolution structural T1 image 

was acquired using a 3D magnetization prepared gradient rapid acquisition gradient echo 

(MPRAGE) sequence (TR = 2000 ms, TE = 1.95 ms, 256* 256 mm field of view, voxel size 

1x1x1 mm). 

From the 10 ON and OFF phases used for analysis, we compared ON phases for presented 

stimuli and checked for group wise contrasts ON trigeminal versus ON olfactory for N = 40. 

Lateralization score, intensity, hedonics and threshold test scores were used as covariates. 

Whole brain activations significant at FWE corrected < 0.05 and p uncorrected < 0.001 with 

cluster size (k) > 10 voxels are reported. For clusters having multiple peaks, one with the 
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highest t- value is chosen. MNI coordinates are presented at x, y and z, L – left hemisphere, R 

– right hemisphere. Significant brain regions were labeled with AAL3 toolbox (http:// 

www.gin.cnrs.fr/en/tools/aal-aal2/) (Rolls et al., 2020). 

Statistics- 

Analyses were performed separately for each odor. In addition, to have an elaborated view 

about how individuals respond towards olfactory and trigeminal stimuli and how neural 

processing differs for the two sensory channels, we grouped the minty-trigeminal stimuli 

peppermint and spearmint under ‘Trigeminal Group’ whereas the non-minty olfactory stimuli 

strawberry and cherry were grouped under ‘Olfactory Group’. 

Analysis of psychophysical data: Paired sample t-test was performed to compare the intensity, 

hedonics, lateralization and threshold test scores for trigeminal (peppermint + spearmint) and 

olfactory (cherry + strawberry) groups for the total study population and for differences between 

groups (GC vs N’GC). For analysis, IBM SPSS version 27 (SPSS Inc., Chicago, Ill., USA) was 

used. The significance level for all statistical tests was set at p < 0.05 unless specified. Results 

presented as mean ± standard deviation (SD). Chi-square test was done comparing males and 

females in both groups. 

Analysis of MRI results- 

Task-driven general linear model approach (GLM) using Statistical Parametric Mapping (SPM) 

software was used for analysis of olfaction/ trigeminal-based fMRI. SPM12 was used to 

analyze the functional MRI data, which is a MATLAB (The Mathworks Inc., Natick, MA, USA) 

based software (Welcome Trust Centre for Neuroimaging, London, UK). On single-odor level, 

one sample t-test was performed for the ON condition. Furthermore, for group level, analysis 

contrast images from individuals were selected for a random effect analysis and paired t-tests 

were per-formed, between and within groups (GC vs N’GC). Results are presented as mean ± 

standard deviation (SD). 

Contributions in publications 

Publication 1: Conceptualization, methodology, conduct of experiments, data analysis, project 

administration, writing manuscript. 

Publication 2: Conceptualization, methodology, conduct of experiments, data analysis, project 

administration, writing manuscript. 

Publication 3: Conceptualization, methodology, conduct of experiments, data analysis, project 

administration, writing manuscript. 
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Publication 1 (First study) A novel technique for olfactory bulb measurements. 

Abstract of publication 1 

Background 

To introduce new ways to calculate OB volumes, checking their validity and comparing them 

to already established technique i.e. OB volumetric based on manual segmentation of OB 

boundaries. 

Methods 

Two approaches were used to calculate OB volumes (1) Manual Segmentation using plan 

metric manual contouring; (2) Box-frame method, calculating the parameters based on a box 

placed around the OB. 

Results 

We calculated OB volumes using both techniques and found comparable outcomes. High inter-

observer reliability was found for volumes calculated by both observers. For manual 

segmentation, Cronbach’s alpha (α) was 0.91 and 0.93 for right and left OB volume, 

respectively, whereas for the box-frame method αwas 0.94 and 0.90 for right and left OB, 

respectively. 

Conclusions 

The simple box-frame method of OB volume calculation appears reliable. Its results are 

comparable to an established technique. 
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Abstract

Background

To introduce new ways to calculate OB volumes, checking their validity and comparing

them to already established technique i.e. OB volumetric based on manual segmentation of

OB boundaries.

Methods

Two approaches were used to calculate OB volumes (1) Manual Segmentation using plani-

metric manual contouring; (2) Box-frame method, calculating the parameters based on a

box placed around the OB.

Results

We calculated OB volumes using both techniques and found comparable outcomes. High

inter-observer reliability was found for volumes calculated by both observers. For manual

segmentation, Cronbach’s alpha (α) was 0.91 and 0.93 for right and left OB volume, respec-

tively, whereas for the box-frame method α was 0.94 and 0.90 for right and left OB,

respectively.

Conclusions

The simple box-frame method of OB volume calculation appears reliable. Its results are

comparable to an established technique.

Introduction

The olfactory bulb (OB) is a highly significant structure in the processing of olfactory informa-

tion. It is the first relay station from the peripheral olfactory system to higher order processing

of olfactory information. In animals, OB continuously replace its local GABAergic interneu-

rons which signifies [1–3] continuous generation of new neurons throughout lifetime [4].
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From the sub-ventricular zone (SVZ), the OB receives progenitor cells through the rostral

migration stream, which have the property of differentiation [4]. These newly born adult cells

further integrate into an already existing OB neural network, hence adapting its function [5].

Less is known about the plastic nature of the OB in humans. Its regenerative property in

humans is still a topic of debate. A study by Bergmann et al., focusing on the age of OB neurons

in humans concluded that age of the OB neurons equals the age of an individual and that less

than 1% of OB neurons are replaced in one’s entire lifetime [6]. However, other groups reported

indications for major regenerative activity in the OB [7]. In addition, the influx of neurons from

the SVZ to the OB had been described in humans [8] which compares to animals [2].

Humans have varied OB volumes, which had been hypothesized to depend on synaptic

input from olfactory receptor neurons [9, 10] In healthy subjects, OB volume was found to

positively correlate with measured olfactory function, and varying with age [11–13]. OB vol-

ume varies in subjects with different olfactory pathologies. For example, subjects with congeni-

tal anosmia may have under-developed or no OB, whereas reduced OB volume was reported

in subjects with post-infectious and post-traumatic olfactory loss [14]. As an exception to this

rule, Weiss et al. reported normal olfactory functioning in women who did not have clear and

distinct OB [14–16].

The OB volume is of clinical importance to gauge olfactory function [13, 17, 18]. As

reported, change in OB volume correlates well with odor threshold and odor identification

[19]. Moreover, because assessment of OB volume requires manual delineation, it is time-con-

suming and needs specific training of observers. Hence, OB volume measurements are typi-

cally not used in routine examinations of patients with olfactory loss. This might change with

the availability of tools allowing reliable but less investigator-biased and faster OB volume

measurement. Hence, the aim of the present study was to introduce a new way to calculate OB

volumes, examining (1) its test- retest reliability and (2) validity, comparing them to the estab-

lished technique, i.e. OB volumetric based on manual segmentation of OB boundaries (3)

checking usability of the new technique by experts and non- experts.

Methods

Subjects

To calculate OB volumes, 52 subjects underwent magnetic resonance imaging (MRI) of the

brain. All participating subjects visited the Smell and Taste Clinic at the Department of Otorhi-

nolaryngology, University Hospital Carl Gustav Carus (Dresden, Germany) and were clinically

diagnosed with smell loss. The local Ethics Committee approved the study. All subjects pro-

vided written informed consent and were tested for their orthonasal olfactory functioning

using the “Sniffin’ Sticks” test battery [20] which comprises three olfactory tests: olfactory

threshold for phenyl ethyl alcohol (a rose-like odor), odor discrimination and odor identifica-

tion. These tests were used to categorize olfactory loss patients as being either functionally

anosmic, hyposmic or normosmic [21].

MRI acquisition

MRI data were acquired on a 3 Tesla scanner (model Prisma; Siemens, Erlangen, Germany).

For the T2 weighted sequence a 32-channel head coil was used. The scanning parameters

were: repetition time (TR) = 1500 ms; echo time (TE) = 78 ms; flip angle = 150˚; slice

thickness = 1mm; field of view matrix = 256 x 320.

Measurement of OB volume. OB volumes (shown in Fig 1B) were calculated using two

methods.
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Manual segmentation method (MS). AMIRA 3D visualization and modeling system

(Visage Imaging, Carlsbad, USA) was used to calculate the volume of right and left OB using

the planimetric manual contouring (PMC) technique (surface in mm2) (Fig 1A and 1C). The

OB sequence included acquisition of 1 mm thick T2- weighted fast spin images, in the coronal

plane that covers middle and anterior portions of the skull base. A standardized PMC protocol

was applied to all scans [22]. Firstly, number of slices with clear visibility of the OB were

selected. On each successive slice of brain, contours on left and right side of OB were manually

drawn. The proximal end of the OB was defined by the abrupt change in the diameter at the

beginning of the olfactory tract [22, 23].Two trained observers blind to the diagnosis and clini-

cal characteristics of the subjects, calculated the volumes (in mm3).

Box- frame method (BF). ITK-SNAP (version 3.8.0, University of Pennsylvania & Uni-

versity of Utah, www.itksnap.org) [24] was used for the alternative calculations of OB volumes.

Firstly, the number of slices with distinct visibility of the OB was noted down. Further, the

slice having the most visible voxels for both right and left side was chosen as the standard slice

(in most cases it was the central slice). As the OB shape varies between individuals, we framed

Fig 1. (A) Whole brain MR scan from a single subject. (B) right and left OB of the subject. (C) MS approach by plane manual

contouring technique. (D) BF approach, with H = height and W = width depiction.

https://doi.org/10.1371/journal.pone.0243941.g001

PLOS ONE Technique for OB measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0243941 December 16, 2020 3 / 9

24

http://www.itksnap.org/
https://doi.org/10.1371/journal.pone.0243941.g001
https://doi.org/10.1371/journal.pone.0243941


a box on it as shown in Fig 1A and 1D. Annotations were drawn on the standard slice using

Image annotation tool. With the help of this tool, we calculated the width (w) and height (h)

by physically drawing a line between two extreme points of OB. For calculation of box volume,

the length (l) was calculated by selecting the total number of slices which showed clear and dis-

tinct OB, multiplied by the slice thickness (1mm) (V = l�w�h, in mm3). Two expert observers

(AJ, XY), blind to the subject’s condition calculated the volumes of right and left OBs. When

the difference exceeded 10%, a third expert observer calculated the volumes again. After input

of the third observer, two closest volumes with less than 10% difference were selected.

The idea for proposing the BF approach was also its usability by non-experts in neuroimaging.

Accordingly, we checked its performance by non- expert observers who belonged to a different

background with no imaging experience. They were well explained how the technique works and

Table 1. Subject characteristics shown as mean ± standard deviation [SD] or number of subjects [N (%)].

Age (in years) 56 ± 14

Male/ female ratio 15/ 32

Causes of olfactory loss

patients with idiopathic olfactory loss N = 8 {17%}

patients with congenital olfactory dysfunction N = 3 {6%}

patients with post- viral olfactory loss N = 36 {77%}

OB results using the Manual Segmentation:

Volume of right OB (Observer 1) (in mm3) 21.52 ± 11.42

Volume of right OB (Observer 2) (in mm3) 19.25 ± 10.67

Volume of left OB (Observer 1) (in mm3) 22.73 ± 13.11

Volume of left OB (Observer 2) (in mm3) 20.44 ± 12.11

OB results using the Box- Frame method (expert)

Volume of right OB (Observer 1) (in mm3) 34.34 ± 18.46

Volume of right OB (Observer 2) (in mm3) 32.96 ± 17.51

Volume of left OB (Observer 1) (in mm3) 32.38 ± 17.53

Volume of left OB (Observer 2) (in mm3) 31.52 ± 17.41

OB results using the Box- Frame method (non-expert)

Volume of right OB (Observer 1) (in mm3) 33.65 ± 17.78

Volume of right OB (Observer 2) (in mm3) 39.24 ± 22.10

Volume of left OB (Observer 1) (in mm3) 42.12 ± 24.46

Volume of left OB (Observer 2) (in mm3) 42.71 ± 27.23

Olfactory test scores

TDI score 17.91 ± 7.86

Threshold score 2.57 ± 2.54

Discrimination score 7.87 ± 3.40

Identification score 7.64 ± 3.49

Duration of smell loss

0–2 years 33

2–5 years 8

5–10 years 2

>10 years 4

Categorisation of participants

Functional anosmia 23

Hyposmia 21

Normosmia 3

https://doi.org/10.1371/journal.pone.0243941.t001
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were asked to do the measurements in all of the subject population. Following the same rules,

when the difference exceeded 10%, a third non-expert observer calculated the volumes again.

Out of the total 52 subjects, five subjects were excluded due to unclear OBs and lack of sub-

ject’s information and finally, volumes of 47 subjects were analyzed and compared for left and

right OB volumes. Out of them, 36 subjects had reduced olfactory functioning due to an infec-

tion in the upper respiratory tract (URTI), eight were diagnosed with idiopathic olfactory loss

(ID) and three had congenital anosmia.

Statistics

The Statistical Package for Social Sciences version 25.0 (IBM SPSS 25.0, Chicago, IL, USA) was

used for statistical analysis. Table 1 shows the characteristic information for all subjects

(means ± SD). A paired t-test was done to compare volumes of right and left OB as calculated

by observers 1 and 2 using both methods. Furthermore, using Pearson correlation, inter-

observer reliability was investigated for the volumes calculated by MS (AMIRA) and BF

(ITK-SNAP) method. The level of significance was set at 0.05.

Results

Mean volumes for right and left OB as measured by 2 observers using MS and BF-methods

varied significantly (p<0.05) with MS producing smaller volumes (Fig 2). Number of slices

chosen by the 2 observers did not vary significantly for both methods. The mean number of

slices for MS and BF methods were 6.3 and 6.8 respectively.

Positive correlation was found between OB volumes calculated by observer 1 and 2 for both

methods: For MS, r = 0.84, p<0.01 (right OB) and r = 0.86, p<0.01 (left OB). For BF, r = 0.95,

p<0.01 (right OB) and r = 0.89, p< 0.01 (left OB) (Table 2 and Fig 3).

Also, positive correlations were found between MS and BF methods (taking the average vol-

umes measured by observer 1 and 2). For right OB, r = 0.73, p<0.01 and for left OB, r = 0.70,

p<0.01 (Table 2).

High inter-observer reliability was found for volumes calculated by observers 1 and 2. For

MS method, Cronbach’s alpha (α) was 0.91 and 0.93 for right and left OB volume, respectively,

whereas for the BF method α was 0.98 and 0.95 for right and left OB, respectively.

Fig 2. Averaging from measurements done by both the expert observers, OB volumes in Mean ± SEM, measured

by both methods: MS right = 20.38 ± 1.54; BF right = 33.65 ± 2.59; MS left = 21.58 ± 1.8; BF left = 31.95 ± 2.5.

https://doi.org/10.1371/journal.pone.0243941.g002
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For BF approach, inter- observer reliability was checked for measurements done by experts

and non- experts. The Cronbach’s alpha (α) for right OB was 0.82 and 0.83 for left OB. The

results advantages its usability by non- experts or less trained as well.

Discussion

In this study, we aimed to find an efficient, reliable yet less time-consuming method to calcu-

late the OB volume. In fact, measurement time for the MS method was approximately 7–10

minutes whereas it takes only one minute for the BF method. Our study indicated that the BF

approach provides reliable results which are in accordance with the results obtained from MS

and when used by experts and non- experts.

So far, the MS of coronal slices is the most widely used method for volumetric measure-

ments of the OB [25] Accuracy and reliability of MS method has been demonstrated clearly in

previous studies [18, 26]. In the present study, we also followed up accuracy and reliability for

the measurements made by the BF approach using ITK-SNAP software. This software was

chosen for its user-friendly interface and free availability. However, many other software solu-

tions could be used for this straight-forward technique. For the BF approach, intraclass coeffi-

cients of correlation between measurements of the two observers were at r = 0.96 for right OB

and r = 0.89 for left OB. The results drawn from this new approach were comparable with the

results obtained from MS approach with r = 0.84 for right OB and r = 0.86 for left OB.

The focus throughout the project was on the introduction of a method that can be clinically

acceptable, with time demands being a major issue. This is important as OB volume is consid-

ered as a measure to evaluate the status of olfactory functioning. There has been evidence in

support of how OB volume clinically describes the severity of olfactory loss. For example, in

comparison to hyposmic patients, OB volumes were found to be smaller for anosmic subjects

in olfactory loss, following infections of the upper respiratory tract or head trauma [27].

Importantly, OB volume also seems to be a predictor of recovery in patients with post-infec-

tious olfactory loss [22]. Hence, the routine assessment of OB volume appears to be useful in

patients with olfactory loss. This is more likely to be diagnostically implemented with the avail-

ability of a fast and convenient approach.

The present investigation also revealed that the internal consistency of measurements made

with either method was excellent. Hence, it can be noted that the new BF method can be used as

a clinically acceptable, efficient, reliable, easy and quick approach to calculate OB volumes. How-

ever, it has to be kept in mind that both MS and BF method remain subjective and voxel selection

may vary depending on skills of the individual observers which requires some degree of training.

To conclude, the present results suggest that the BF method for OB volumetric is reliable

and produces valid results, comparable to the results from MS. The new technique is a simple,

Table 2. Correlations between right and left OB volumes obtained by expert observers (O1 = observer 1 and O2 = observer 2) and with different techniques (manual

segmentation and box frame method).

Coefficients of correlation (r) level of significance (p)

O1 vs. O2: Manual Segmentation Right OB 0.84 <0.01

O1 vs. O2: Box-frame Right OB 0.95 <0.01

O1 vs. O2: Manual Segmentation Left OB 0.86 <0.01

O1 vs. O2: Box-frame Left OB 0.90 <0.01

Manual Segmentation vs Box- frame Right OB 0.73 <0.01

Manual Segmentation vs Box- frame Left OB 0.70 <0.01

https://doi.org/10.1371/journal.pone.0243941.t002
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quick approach and may require less training than MS of the OB. It is hoped that this technique

paves the road for the routine clinical assessment of OB volume in patients with olfactory loss.

Supporting information

S1 Data.

(XLSX)
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OB volume) and (D) r = 0.90, p< 0.01 (left OB volume).
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Publication 2 (Second study): Neural processing of olfactory‑related words in subjects 

with congenital and acquired olfactory dysfunction. 

 

Abstract of publication 2 

Background 

Olfactory loss can be acquired (patients with a history of olfactory experiences), or inborn 

(patients without olfactory experiences/ life-long inability to smell). Inborn olfactory loss, or 

congenital anosmia (CA), is relatively rare and there is a knowledge gap regarding the 

compensatory neural mechanisms involved in this condition. The study aimed to investigate 

the top-down olfactory processing in patients with CA or idiopathic acquired anosmia (IA) in 

comparison to normosmia controls (NC) during expectancy and reading of odor‑associated 

words.  

Methods 

Functional magnetic resonance imaging was used to assess brain activations in 14 patients 

with CA, 8 patients with IA, and 16 NC healthy participants during an expectancy and reading 

task. Words with strong olfactory associations (OW) (e.g. “banana”) or with little or no olfactory 

associations (CW) (e.g. “chair”) were used as stimuli and were presented in a block design. 

Analyses were conducted to explore the brain activation in response to OW expectancy or OW 

reading between groups (CW as baseline).  

Results 

 During the expectancy condition of OW, IA and NC groups showed stronger activation in 

posterior OFC extending to right insula, caudate region and frontal medial OFC respectively. 

Whereas during the reading condition of OW, CA patients showed stronger activation in 

posterior OFC extending to the insula. 

Conclusions 

Increased activation of higher-order brain regions related to multisensory integration among 

CA patients suggests a compensatory mechanism for processing semantic olfactory cues. 
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of olfactory‑related words 
in subjects with congenital 
and acquired olfactory dysfunction
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Olfactory loss can be acquired (patients with a history of olfactory experiences), or inborn (patients 
without olfactory experiences/life-long inability to smell). Inborn olfactory loss, or congenital anosmia 
(CA), is relatively rare and there is a knowledge gap regarding the compensatory neural mechanisms 
involved in this condition. The study aimed to investigate the top-down olfactory processing in 
patients with cA or idiopathic acquired anosmia (iA) in comparison to normosmia controls (nc) during 
expectancy and reading of odor‑associated words. functional magnetic resonance imaging was used 
to assess brain activations in 14 patients with CA, 8 patients with IA, and 16 NC healthy participants 
during an expectancy and reading task. Words with strong olfactory associations (oW) (e.g. “banana”) 
or with little or no olfactory associations (cW) (e.g. “chair”) were used as stimuli and were presented 
with a block design Analyses were conducted to explore the brain activation in response to OW 
expectancy or OW reading between groups (CW as baseline). During the expectancy condition of OW, 
IA and NC groups showed stronger activation in posterior OFC extending to right insula, caudate 
region and frontal medial OFC respectively. Whereas during the reading condition of OW, CA patients 
showed stronger activation in posterior OFC extending to the insula. Increased activation of higher-
order brain regions related to multisensory integration among cA patients suggests a compensatory 
mechanism for processing semantic olfactory cues.

In humans, the causes for compete smell loss (anosmia) are due to either acquired or congenital causes. In 
contrast to acquired anosmia which the sense of smell is impaired later in the life, congenital anosmia (CA) is 
a rare condition which is characterized by a life-long lack of olfactory perception and the aplasia or hypoplasia 
of the olfactory  bulb1.

Stimulation with either odor molecules or olfactory associated non-chemical cues (e.g. pictures, words, 
metaphors) can activate the central olfactory system, representing the bottom-up and the top-down pathways 
for olfactory processing. For bottom-up process, odor molecules bind to olfactory receptors before olfactory 
signals are transmitted via olfactory bulb and are further processed in multiple olfactory related brain regions 
(e.g. piriform cortex, amygdala, orbitofrontal cortex, insula, hippocampus, anterior cingulate cortex)2–4. On 
the other hand, during top-down processing, the retrieval of cognitive information related to an odor occurs 
without the existence of a physical  stimulus5. These top-down activations involve the olfactory-related as well 
as higher-order brain  regions2,6–9.

Patients with olfactory dysfunction demonstrate decreased brain activation in response to odor stimulation, 
indicating a disrupted bottom-up olfactory  process10,11. Moreover, several brain imaging studies have suggested 
alterations of the top-down olfactory process among patients with olfactory loss. For example, Flohr et al.12 
found that patients with acquired smell loss are unable to vividly image odors with a given odor-associated cue, 
and exhibited enhanced brain activation in the dorsal lateral prefrontal cortex and the precuneus regions mainly 
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involved in working memory. Using blocks of words with strong olfactory associations, Han et al.13 investigated 
the reading of odor related words among a group of patients with acquired olfactory loss. Specifically, during 
the word priming, patients had increased activation of the lexical-semantic related areas during expectation 
of words with olfactory association. Combined, these studies suggested that patients with olfactory loss have 
changed neural responses in the olfactory cortex during processing of olfactory information. However, research 
on the neural processing of olfactory information among CA are limited.

To date only a few studies have investigated the structural and functional alterations in CA. While reduced 
gray matter volume in olfactory related brain regions are found in acquired anosmia, CA is associated with 
increased gray matter volume in the primary olfactory area and the orbitofrontal  cortex14,15. One recent study 
showed that CA exhibited audio-visual multisensory enhancement, which suggested a compensation for complete 
lack of olfactory  input16. If and to what extent brain responses during top-down olfactory processes are altered 
in CA is unknown. The current study aimed to investigate brain processing of odor-related words in CA and 
compare that to patients with acquired idiopathic anosmia (IA), and normosmic controls (NC). We hypothesized 
that IA and NC subjects show more activations in olfactory associated areas because of their pre-existing olfac-
tory associated semantic knowledge whereas activations in CA subjects were expected to be significantly lower 
as compared to others because of their complete lack of olfactory  experience17.

Materials and methods
participants. Participants were recruited from the resident of Dresden area (control participants) and the 
Smell and Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Dresden 
(patients). All participants received the “Sniffin’ Sticks” olfactory  test18. A composite odor threshold, odor dis-
crimination and odor Identification score (TDI score) was used to classify normal olfaction (TDI > 30.5) and 
anosmia (TDI < 16.5). In order to ascertain anosmia in CA patients, olfactory event related potentials were 
recorded, and in none of the patient’s olfactory event related potentials were  detected19. CA subjects were diag-
nosed with lack or hypoplasia of olfactory bulb and a life-long olfactory dysfunction without other known etiol-
ogy. Patients with idiopathic anosmia (IA) were those patients with no cause for their olfactory dysfunction was 
found after detailed clinical investigations (including medial history questionnaires, psychophysical olfactory 
testing, olfactory pathways morphology assessment)20. In addition, participants completed the German version 
of Beck Inventory [ranging from normal state (1–10) to extreme depression (over 40)  II]21 and the Montreal 
Cognitive assessment (ranging from 0 to 30)22 for assessing the level of depression and executive functions, 
respectively.

A total of 40 participants took part in the study. Of those, eighteen were control participants with normal 
olfaction (NC, mean age 49.2 years; SD 12.2; 10 females), 14 were patients with congenital anosmia (CA, mean 
age 37.4 years, SD 18.9; 7 females) and 8 patients with idiopathic anosmia (IA, mean age 56.4 years; SD 10.8; 4 
females, disease duration ranging between 9 and 108 months). The study was approved by the Ethics committee 
of the medical faculty at the Technical University of Dresden. The experiment was conducted according to the 
Helsinki declaration. All participants provided written informed consent.

Study design. For our experimental design, 36 words with strong olfactory association (OW) and 36 words 
with little or no olfactory association i.e. control words (CW) were presented to the participants lying in the 
scanner. Apart from the 24 new words as displayed in Table 1, for convenience of later analysis some words were 
randomly repeated to have a block time of 20 s each.

We chose the words with higher olfactory association as reported by Han et al.13. Briefly, 50 words with olfac-
tory association and 50 words with little or no olfactory association were screened and rated by experts (PH, TH, 
JA, IC). Through a pilot study, 18 normosmics were asked to rate the randomly presented OW and CW words 
for the degree of olfactory association using a numerical scale ranging from 0 to 5. Combining with the ratings 
from expert selection, CW had a mean score of 0.4 (SD 0.3) whereas OW had a mean rating score of 3.2 [(SD 
0.9); t (17) = 13.5, p < 0.001]13.

The participants were instructed to covertly read the instructions and words. Cueing prior to word blocks 
was adopted to guide participants to (1) focus on the olfactory aspects of the displayed words (2) induce an 
expectation for the following words; and (3) to clearly separate the OW from the CW blocks. Olfactory related 
semantic differences were chosen as a criterion to differentiate between conditional activation. However, no 
control on the word frequency was marked on. The word length (e.g. number of characters in each word) was 
taken into consideration during selection, however, no statistical analysis was performed on this. Specifically, the 
experimental run contained 24 blocks in total with 12 blocks each of OW and CW; displayed in an alternating 
pattern. For each block, the expectation was induced with a slide showing for 2.5 s with the term ‘Words with 
smell’ (German: ‘Wörter mit Duft’) or “Words with no smell” (German: ‘Wörter ohne Duft’) followed by a 1-s 
fixation cross, making the expectation task for 3.5 s. The reading phase included three OW or CW presented for 
2.5 s each, with 1-s intervals between words, making the reading task for 10.5 s. During inter-block intervals, a 
fixed cross was shown for 6 s. Each block was of 20 s. The order of the words within each block was randomized 
among participants. In the complete experiment we had 36 OW + 36 CW words in total scan time of 480 s = 8 min 
((12 + 12) × 20 s/block). A simplified diagram of the fMRI design is depicted in Fig. 1.

imaging data acquisition and preprocessing. Functional and structural brain images were acquired 
on a 3-T MRI scanner (Siemens Prisma, Erlangen, Germany) equipped with an 8-channel head coil. A total of 
220 functional images were collected per individual using a T2 single-shot echo-planar imaging (EPI) sequence: 
TR = 2000 ms, TE = 40 ms, 90° flip  angle13, voxel size 3 × 3 × 3.75 mm, no interslice gap, 192 × 192 mm field of 
view. A high-resolution structural T1 image was acquired using a 3D magnetization prepared gradient rapid 
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acquisition gradient echo (MPRAGE) sequence (TR = 2530 ms, TE = 2.34 ms, 256 × 256 mm field of view, voxel 
size 1 × 1 × 1 mm).

SPM12 (statistical parametric mapping) was used to analyze the functional MRI data, which is a MATLAB 
(The Mathworks Inc., Natick, MA, USA) based software from Welcome Trust Centre for Neuroimaging, Lon-
don, UK. Default settings were used for pre-processing of data which included—realignment, unwarping, co-
registration, segmentation, smoothing and normalization. For all the subjects, head movement artifacts were 
further removed using ArtRepair software (version 4, Stanford University)9, after which neuroimaging data of 
one control subject was discarded due to excessive movement. In the end, data set included functional images 
of 14 CA, 8 IA and 16 NC participants.

Table 1.  Words shown to the participants in the scanner (words in German, with English translation in 
brackets).

Olfactory associated words Non-olfactory associated control words

Fisch (fish) Nadel (needle)

Popcorn (popcorn) Stein (stone)

Zimt (cinnamon) Schlüssel (key)

Karamel (caramel) Teller (plate)

Senf (mustard) Aufzug (elevator)

Leder (leather) Schloß (lock)

Vanille (vanilla) Kugel (bullet)

Zigarre (cigar) Schere (scissors)

Wein (wine) Brille (glasses)

Käse (cheese) Halsband (collar)

Rose (rose) Schachspiel (chess)

Ananas (pineapple) Stuhl (chair)

Gummi (rubber) Ventilator (fan)

Knoblauch (garlic) Bildscirm (screen)

Anis (aniseed) Spiegel (mirror)

Pfirsich (peach) Hefter (stapler)

Menthol (menthol) Wasser (water)

Schokolade (chocolate) Handy (mobile)

Gras (grass) Batterie (battery)

Orange (orange) Eimer (bucket)

Erdbeere (strawberry) Uhr (clock)

Kaffee (coffee) Tasche (bag)

Banane (banana) Tür (door)

Schweiß (sweat) Glas (glass)

Figure 1.  fMRI experimental block design with expectancy task (3.5 s) and reading task (10.5 s); “+” as fixation 
cross; “ISI” as inter-stimulus interval (6 s) and “s” as seconds.
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fMRI analysis. On the single-subject level, the conditions for OW expect and OW read were calculated 
as follows:  OWexpect = (OW − NW)expect, and  OWread = (OW − NW)read. Further, on the group level the contrast 
images from each individual were subjected to a random effect analysis to test specific research questions: (1) 
one-way ANOVA analysis was used to test between-group differences regarding OW expect; (2) the one-way 
ANOVA analysis was used to test between-group differences regarding OW read. Age, sex, and BDI scores 
were controlled in the models in the SPM 2nd level model. Significant brain activation was searched on the 
whole-brain level. To control for multiple statistical testing within the entire brain, we maintained a cluster-level 
false-positive detection rate at p < 0.05 using an initial voxel-level threshold of p < 0.001 with a cluster extent (k) 
empirically determined by Monte Carlo simulations (n = 1,000 iterations), by means of AlphaSim  procedure23. 
This was done using the REST toolbox (https ://www.restf mri.net/forum /REST_V1.7)24. A minimum cluster size 
(number of contiguous voxels) was determined for each specific contrast to achieve a cluster-level Family-Wise 
Error corrected p < 0.05, and were reported as part of the results. Significant brain regions were labelled and 
reported with the AAL  toolbox25 . The activation levels (contrast estimates) in significant clusters were plotted 
for each group (NC, IA, CA) using the plot function in SPM.

Statistical analyses for behavioral data. Behavioral and socio-demographic measurements (“Sniffin’ 
Sticks” test score; BDI score; MCAT score) were analyzed using IBM SPSS version 2.4 (SPSS Inc., USA, Chicago) 
using one-way ANOVA, including age and sex as co-variables of no interest. The significance level for all the 
statistical tests was set at p < 0.05 unless specified. Results are represented as means ± standard deviation (SD).

Results
characteristics of participants. The socio-demographical and psychophysical measurements for each 
group were shown in Table 2. Age of CA was significantly smaller compared to the other two groups. Patients 
with IA had highest BDI scores compared to NC and CA groups. The sex distribution, taste spray score or the 
Montreal cognitive assessment test score were not different between groups.

fMRI results. Difference between control and patient groups during expectation of OW. During expectation 
of OW, significant main effect of group was observed in the right posterior OFC extending to insula, the left 
posterior OFC, left caudate and anterior cingulate cortex (ACC) (Fig. 2; Table 3). The pairwise between-group 
comparison showed stronger activation of the frontal medial OFC extending to left ACC among NC compared 
to CA participants, and stronger activation of the posterior OFC extending to insula among IA compared to CA 
patients. Besides, the IA patients demonstrated significant stronger activation in the bilateral caudate as com-
pared to NC participants during OW expectation (Table 3).

Differences in brain activation between control and patient groups during reading of OW. By applying the cor-
rected threshold (p < 0.001 and k > 18 voxels), there was no significant activation of the main effect during read-
ing OW. We further compared NC vs CA, and IA vs CA, separately. With a corrected threshold (p < 0.001 with 
cluster size > 43 voxels), the CA patients showed significantly stronger activation of the posterior OFC extending 
to the insular cortex compared to NC participants (peak MNI coordinates 36 16 − 16, T = 4.48, k = 92). There was 
also stronger activation of the left occipital cortex in CA as compared to IA patients (peak MNI coordinates − 34 
− 82 36, T = 3.89, k = 85). No other significant activation was observed from the between-groups comparisons.

Discussion
The current study investigated neural processing of words with olfactory associations in patients with life-long 
olfactory loss (congenital anosmia, CA) in comparison with a group of control participants with normal olfaction 
(NC) and a group of patients with acquired olfactory dysfunction (idiopathic anosmia, IA). Most importantly, the 

Table 2.  Socio-demographical and psychophysical information for normal control (NC), congenital 
anosmia (CA) and the idiopathic anosmia (IA) groups. Comparison p values indicate main effect of ANOVA, 
superscripts with different letters (a, b) Indicate significant difference in post-hoc comparisons. TDI combined 
odor threshold, discrimination and identification score, MoCA Montreal cognitive assessment test. BDI Beck 
depression inventory test, n.s. not significant.

NC (N = 16) CA (N = 14) IA (N = 8) Comparison

Age (years) 49.2 ± 12.2a 37.4 ± 18.9b 56.4 ± 10.8a p < 0.05

Female/male (n) 10/6 7/7 4/4 n.s

Odor threshold 8.6 ± 2.4 a 1.5 ± 1.5 b 0.4 ± 0.2 b p < 0.001

Odor discrimination 12.8 ± 2.2 a 5.7 ± 1.7 b 5.6 ± 3.6 b p < 0.001

Odor identification 14.2 ± 1.7 a 4.8 ± 2.0 b 3.9 ± 2.6 b p < 0.001

TDI score 35.6 ± 3.8 a 12.0 ± 2.7 b 10.7 ± 6.0 b p < 0.001

Taste sprays 3.7 ± 0.6 4.0 ± 0.0 4.0 ± 0.0 n.s

MoCA 27.0 ± 2.1 26.6 ± 2.8 25.4 ± 1.7 n.s

BDI 2.5 ± 2.4 a 2.8 ± 2.9 a 7.0 ± 7.2 b p < 0.05
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CA group, having never sensed any olfactory stimuli, showed stronger activations in the posterior OFC, extending 
to insular cortex compared to NC participants during OW reading. The activation in the OFC region is similar 

Figure 2.  Neural responses showing the main group effect during OW expectation in (a) left frontal medial 
OFC; (b) left caudate; (c) posterior OFC/right insula; (d) left posterior OFC. Brain maps were threshold at 
 puncorrected ≤ 0.001 in combination of a cluster size determined using the Monte Carlo simulations (n = 1,000 
iterations) following the AlphaSim procedure, and visualized on a template (ch2better.nni) provided in SPM12. 
Bar charts display the contrast estimates for the illustrated regions.
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to what has been observed in both healthy controls and patients with acquired olfactory loss where reading of 
olfactory associated words led to similar  activations7,13. During expectation of OW, the IA patients demonstrated 
stronger activation in the posterior OFC extending to insula as compared to the CA patients. The OFC is rel-
evant for the processing and integration of information from different sensory  modalities26. Also, activation in 
the OFC supports the interaction between the odor related word cues and their respective odor  percepts27. In 
comparison to NC, IA patients when expecting the olfactory associated words also showed major activations 
in caudate, which can be interpreted for its involvement in executive  processes28 specifically, in goal-directed 
actions. Moreover, in comparison to CA, NC group showed activations extending to ACC, which indicate its 
key role in  attention29,30 and in working memory  tasks31. NC, IC, and CA seem to use distinct strategies when it 
comes to anticipating words with olfactory associations.

During OW reading, stronger activation of a very similar cluster in the posterior OFC extending to insula was 
found among CA as compared to NC groups. As stated above, this region is involved in multisensory integrative 
processing, that receive information from the olfactory, gustatory and visual  sources32–34. Unlike the expectation 
condition where no direct odor-related cues were shown, displaying OW could initiate neural processing of word 
related semantic and olfactory information more efficiently. Although CA patients have a life-long deprivation 
of olfactory perception, their knowledge regarding other chemical inputs (e.g. gustatory and trigeminal input) as 
well as the semantic meaning of the OW remains intact. Besides, CA patients have been shown to exhibit slightly 
enhanced abilities for non-chemical multisensory (e.g. audio-visual) integration compared to people with intact 
 olfaction8, indicating an existing compensatory mechanism. Therefore, stronger activation during OW reading 
among the CA group may reflect the process of multisensory integration, involving semantic comprehension. 
The exact process behind the increased activation among CA remains to be explored. Stronger activation was also 
found in the occipital cortex among CA compared to IA during reading of OW, possibly indicated an enhanced 
attention paid to the olfactory-related words among CA patients.

A number of fMRI studies have reported similar patterns of brain activation during olfactory memory tasks 
cued by non-odorous objects such as images or  words6,35,36 and during the processing of physical olfactory stimuli. 
Brain activity during representation of sensory stimulus without direct external stimulus (mental imagery) has 
been studied in various modalities including visual, auditory and tactile. In general, regions associated with 
mental imagery were found to be those regions associated with perception in the same sensory  modality37,38. 
In the present case one would expect participation of primary and secondary olfactory areas, given that these 
participate in olfactory  perception39,40. The presently observed activation of OFC when reading the OW, can be 
related to the odor imagery approach as shown in previous studies. There activation in the right OFC, associating 
imagery with the perception of physically present odors was related to the experienced realness or “vividness” 
of an olfactory  image40,41. In our study, given the visual sources, integration of visual and olfactory information 
occurs in OFC, where the odor percepts were linked to their respective names. Djordjevic et al.2 also reported 
activation of the insular cortex as a result of odor imagery. Neuroimaging studies suggest that a number of factors 
could modify activation of these olfactory brain regions. Among these possible effects are: increased respira-
tory amplitude, due to  sniffing42, attentional  demands43, lexico-semantic processing of  words7, or cross modal 
associative  learning44. All in all, olfactory top-down processing has a significant role in encoding or recalling of 
learned  information45, which results in anticipation of an odor or processing of odor-associated  cues13. Therefore, 
based on the present results it appears that there is overlap of neural processing in terms of both bottom-up and 
top-down olfactory representation.

There are a few limitations applied to the current study. First, the small sample size. Given the scarcity of CA 
cases, studies on this group of patients are typically small (i.e. less than 20 patients). Second, the breathing was 
not monitored during the MRI scan. The possible alteration of breathing in  patients46 may introduce noise as 
variable that affect the observed brain  responses10,39. Thirdly, we did not explore the association of the presented 
words with foods. Such an association might explain some of the overlapping activations in the 3 groups of 
patients; fourthly, for reasons of study design, olfactory words and control words were not evaluated for their 
valence and their association with edibility which also might impact the processing of words.

Table 3.  Between-group comparisons during expectation of OW. Whole brain F or T maps were thresholded 
at uncorrected p < 0.001 and cluster size k > 10 voxels; For clusters with multiple peaks only the highest T value 
is reported; MNI coordinates are presented in x, y, and z. L, left hemisphere; R right hemisphere. Brain regions 
labelled with AAL toolbox (https ://www.gin.cnrs.fr/en/tools /aal-aal2/).

k F/T value x y z Region

Main effect

63 15.14 42 16 − 16 Posterior OFC/Insula R

20 12.65 − 34 16 − 22 Posterior OFC L

37 11.48 − 14 − 18 22 Caudate L

27 10.12 − 2 56 − 4 Frontal medial OFC/ ACC L

NC > CA 295 4.50 − 2 56 − 4 Frontal medial OFC/ ACC L

IA > NC
178 4.79 − 14 − 18 22 Caudate L

40 4.17 22 − 24 24 Caudate R

IA > CA
117 5.43 42 16 − 16 Posterior OFC/Insula R

46 4.72 − 34 16 − 22 Posterior OFC L
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In conclusion, our results demonstrate different neural responses during expectation and reading of words 
with strong olfactory associations among people with acquired anosmia, congenital anosmia and normosmia. 
Increased activation of the higher-order brain regions related to multisensory integration among CA during read-
ing of olfactory related words may suggest a compensatory mechanism for processing of semantic olfactory cues.
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the processing of Chemosensory Stimuli. 

 

Abstract of publication 3 

Objective 

Our objective was to compare brain responses to trigeminal and olfactory stimuli in frequent 

and non-frequent gum chewers in order to explore whether habitual exposure to trigeminal 

stimuli affects their central-nervous processing.  

Methods 

In healthy subjects, fMRI brain scans were obtained for 20 frequent gum chewers (GC) and 20 

non-frequent gum chewers (N’GC), in response to four odorous stimuli; 2 ‘trigeminal’ 

(peppermint and spearmint) and 2 non-trigeminal or ‘olfactory’ (cherry and strawberry). During 

measurements, subjects reported intensity and pleasantness ratings for all stimuli. In addition, 

a test for general trigeminal sensitivity test (lateralization test) and an odor threshold test was 

performed. Brain activations in response to individual odors were investigated for the total 

study population followed by group wise (GC and N’GC) analysis separately for responses to 

trigeminal (peppermint + spearmint) and olfactory (cherry + strawberry) odors.  

Results 

 (1) The GC group exhibited higher trigeminal sensitivity compared to the N’GC group. (2) 

Olfactory odors activated bilateral insular cortex and amygdala. Apart from olfactory areas 

(amygdala, insular cortex), trigeminal odors also produced activations in right thalamus and 

right substantia nigra. (3) In the GC group, olfactory odors produced higher bilateral insular 

cortex activation than in N’GC group, but no such differences were observed for trigeminal 

odors.  

Conclusion 

 GC subjects appeared to be more responsive to trigeminal chemosensory stimuli. However, 

this did not directly translate into differences in central-nervous activations to trigeminal stimuli; 

instead, the use of chewing gum was associated with stronger brain activation towards 

olfactory stimuli.   
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Abstract—Our objective was to compare brain responses to trigeminal and olfactory stimuli in frequent and non-
frequent gum chewers in order to explore whether habitual exposure to trigeminal stimuli affects their central-
nervous processing. In healthy subjects, fMRI brain scans were obtained for 20 frequent gum chewers (GC)
and 20 non-frequent gum chewers (N0GC), in response to four odorous stimuli; 2 ‘trigeminal’ (peppermint and
spearmint) and 2 non-trigeminal or ‘olfactory’ (cherry and strawberry). During measurements, subjects reported
intensity and pleasantness ratings for all stimuli. In addition, a test for general trigeminal sensitivity test (lateral-
ization test) and an odor threshold test was performed. Brain activations in response to individual odors were
investigated for the total study population followed by group wise (GC and N0GC) analysis separately for
responses to trigeminal (peppermint + spearmint) and olfactory (cherry + strawberry) odors. (1) The GC group
exhibited higher trigeminal sensitivity compared to the N0GC group. (2) Olfactory odors activated bilateral insular
cortex and amygdala. Apart from olfactory areas (amygdala, insular cortex), trigeminal odors also produced acti-
vations in right thalamus and right substantia nigra. (3) In the GC group, olfactory odors produced higher bilateral
insular cortex activation than in N0GC group, but no such differences were observed for trigeminal odors. GC sub-
jects appeared to be more responsive to trigeminal chemosensory stimuli. However, this did not directly translate
into differences in central-nervous activations to trigeminal stimuli; instead, the use of chewing gum was asso-
ciated with stronger brain activation towards olfactory stimuli. � 2021 IBRO. Published by Elsevier Ltd. All rights

reserved.

Key words: smell, odor, FMRI, cooling, olfactory, chewing gum.

INTRODUCTION

We experience thousands of odors from our surroundings

which predominantly involve activation of two major

chemosensory systems; the olfactory system which

mediates odor perception, and the trigeminal system

which leads to sensations such as tickling, burning,

stinging, touch, pressure and temperature (Albrecht

et al., 2010; Hummel and Frasnelli, 2019). Both systems

contribute to the odor percept. This interaction between

the two systems is also important in terms of flavor

(Pellegrino et al., 2017b).

A pure olfactory stimulus typically activates both the

primary and secondary olfactory areas such as insular

cortex, piriform cortex, and amygdala. Whereas odors

which interact with both the olfactory and trigeminal

systems (bimodal odors) induce widespread activations

in regions including insular cortex, somatosensory

cortex, thalamus, hypothalamus, caudate nucleus,

orbitofrontal cortex and brain stem (Savic, 2002; Boyle

et al., 2007; Albrecht et al., 2010; Pellegrino et al.,

2017b; Lötsch et al., 2020). Functional overlap between

the two systems includes activations of the piriform cor-

tex, medial orbitofrontal cortex, and the secondary

somatosensory cortex (Boyle et al., 2007; Hummel

et al., 2009).

Adaptation is a major characteristic of the olfactory

(Pellegrino et al., 2017a). Less is known about the trigem-

inal modality. Repeated exposure to trigeminal stimuli

may result in increased sensitivity at peripheral and

central-nervous levels (Dalton et al., 2006; Oleszkiewicz

et al., 2018). Specifically, short-term exposure to bimodal

stimuli results in increased sensitivity towards a selective

trigeminal stimulus CO2 (Oleszkiewicz et al., 2018). How-

ever, this idea is challenged by the desensitization which

is found in response to repeated exposure to capsaicin

(Van Gerven et al., 2017).

Little is known about the neural responses towards

long-term exposure to trigeminal stimulation. We used

habitual consumption of foods with trigeminal stimulants
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as a model to investigate effects of long-term trigeminal

stimulation. A reason behind choosing the use of

chewing gum is because it is one of the most popular

pastimes in the younger population (Sasaki-Otomaru

et al., 2011). In the present study, we aimed to study pos-

sible changes of the chemosensory systems in response

to prolonged stimulation to trigeminal stimuli. Brain activa-

tions were compared between frequent chewing-gum

users (GC) and non-frequent chewing-gum users (N0GC)

in response to both trigeminal and olfactory odors using

functional brain imaging. For testing, we included the

minty flavor of chewing gums, namely peppermint and

spearmint as ‘‘trigeminal odor” eliciting a cooling and even

slightly painful sensation (McKemy et al., 2002; Hansen,

2017) and non-minty, olfactory stimuli such as strawberry

and cherry.

EXPERIMENTAL PROCEDURES

Participants

Forty healthy subjects (m = 22, f = 18) with a mean age

25 ± 3 years (age range 18–40 years) were recruited in

the study. Subjects received a structured medical

history (Welge-Luessen et al., 2013), which, among

others, included questions on demographics, smoking

and drinking habits, medications, current disorders, family

history of any neurodegenerative disease and general

nasal health status. GC and N0GC subjects were identi-

fied based on a questionnaire asking about their mint con-

sumption patterns. Subjects in the GC group (n = 20)

chewed gums at least twice a day; used mint toothpaste,

consumed peppermint tea or related foods frequently.

N0GC (n = 20) consumed little or no chewing gums, mint

toothpaste or any other mint related food items.

All subjects reported a normal sense of smell which

was ascertained using an odor identification test (with

maximum score of 16) from the ‘‘Sniffin’ Sticks” olfactory

test battery (Oleszkiewicz et al., 2018). This test is per-

formed within a forced choice paradigm where subjects

have to identify 16 odors at supra- threshold concentra-

tions using flash cards with four descriptors each (Cain

and Stevens, 1989; Kobal et al., 2000). Participants

reached an average score of 13.6 ± 1.4 (mean ± SD).

The experiments were conducted according to the

Helsinki declaration. The ethics committee at the

medical faculty of the Technical University of Dresden

approved the study design. Subjects were recruited by

putting flyers on campus. They provided written

informed consent.

Study design

Subjects were pretested for odor identification score,

followed by threshold testing and lateralization test.

After checking for their normal olfactory and trigeminal

sensitivity subject’s underwent fMRI scanning.

During fMRI measurements, odorous stimuli were

presented using a portable and computer-controlled

olfactometer (Sommer et al., 2012), embedded in a 2 L/

min constant airflow. Each functional run was comprised

of 11 OFF or ‘‘baseline” blocks and 10 ON blocks. From

the main block design (Fig. 1), 10 blocks of ON and

OFF phases were analyzed to increase stimulus related

BOLD signals.

Odors were delivered intranasally during the ON

session for 8 seconds and odorless air for 12 seconds

during the OFF session. Each subject underwent four

functional runs with one type of odor presented in one

run. Across subjects, the sequence of these runs was

randomized using a Latin Square. After each run,

subjects were asked to rate the intensity and

pleasantness for the odor presented. The intensity scale

ranged from zero (unnoticeable) to 10 (very strong) and

pleasantness ranged from zero (extremely unpleasant)

to 10 (extremely pleasant) with five being neutral.

Subjects communicated orally through the scanner

intercom system.

Odor stimuli

We selected four odors for testing (provided by Takasago,

Paris, France): Peppermint (order number ABX321352),

Spearmint (ABX321351A), Strawberry (ABX321354A),

and Cherry (ABX321603). These odors resemble flavors

used in chewing gums. Peppermint and spearmint are

minty, majorly trigeminal odors, whereas cherry and

strawberry are non-minty, olfactory odors.

Psychophysical testing

In the pilot study, intensities of all the presented stimuli

were checked using visual analog scales so that they

were perceived as isointense (F [3, 76] = 2.11,

p = 0.10). Pure odors with no dilution were used. The

isointense levels of odors were used for the

lateralization task (Hummel et al., 2003; Frasnelli et al.,

2011) which was performed to gauge trigeminal sensitivity

for the 4 odors used.

In addition, odor thresholds were obtained for each of

the four odors. Participants were repeatedly exposed to

high and low odor concentrations (score range 1–8)

(Laing and Doty, 2003). Subjects receive triplets of odors

presented in glass bottles (4 ml liquid odor; bottles with

50 ml volume, diameter of opening 4 cm) and have to dis-

criminate one bottle with odorous solution from two others

containing the diluent propylene glycol (Sigma-Aldrich,

Deisenhofen Germany; order number 398039). This test

was done to identify the least distinguishable concentra-

tions for each of the four odors used (Croy et al., 2009).

All performed tests were based on a forced choice

paradigm.

Fig. 1. Experimental design. fMRI design of odor presentation; ON

session (10 repeats) each of 8 seconds and OFF session (11

repeats) each of 12 s.
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fMRI data acquisition and analysis

Functional brain images were acquired on a 3-T MRI

scanner (Siemens Verio, Erlangen, Germany) using a

32– channel head coil. Total of 248 functional images

were collected per individual using a T2 single-shot

echo-planar imaging (EPI) sequence: TR = 869 ms,

TE = 38 ms, 58� flip angle, no interslice gap,

210 � 210 mm field of view. A high-resolution structural

T1 image was acquired using a 3D magnetization

prepared gradient rapid acquisition gradient echo

(MPRAGE) sequence (TR = 2000 ms, TE = 1.95 ms,

256 � 256 mm field of view, voxel size 1 � 1 � 1 mm).

From the 10 ON and OFF phases used for analysis,

we compared ON phases for presented stimuli and

checked for group wise contrasts ON trigeminal versus

ON olfactory for N = 40. Lateralization score, intensity,

hedonics and threshold test scores were used as

covariates. Whole brain activations significant at FWE

corrected < 0.05 and p uncorrected < 0.001 with

cluster size (k) > 10 voxels are reported. For clusters

having multiple peaks, one with the highest t- value is

chosen. MNI coordinates are presented at x, y and z, L
– left hemisphere, R – right hemisphere. Significant

brain regions were labeled with AAL3 toolbox (http://

www.gin.cnrs.fr/en/tools/aal-aal2/) (Rolls et al., 2020).

Statistics

Analyses was performed separately for each odor. In

addition, to have an elaborated view about how

individuals respond towards olfactory and trigeminal

stimuli and how neural processing differs for the two

sensory channels, we grouped the minty-trigeminal

stimuli peppermint and spearmint under ‘Trigeminal

Group’ whereas the non-minty olfactory stimuli

strawberry and cherry were grouped under ‘Olfactory

Group’.

Analysis of psychophysical data: Paired sample t-test

was performed to compare the intensity, hedonics,

lateralization and threshold test scores for trigeminal

(peppermint + spearmint) and olfactory (cherry + straw

berry) groups for the total study population and for

differences between groups (GC vs N0GC). For

analysis, IBM SPSS version 27 (SPSS Inc., Chicago,

Ill., USA) was used. The significance level for all

statistical tests was set at p < 0.05 unless specified.

Results presented as mean ± standard deviation (SD).

Chi-square test was done comparing males and

females in both groups.

Analysis of MRI results: Task-driven general linear

model approach (GLM) using Statistical Parametric

Mapping (SPM) software (Penny et al., 2011) was used

for analysis of olfaction/trigeminal based fMRI. SPM12

was used to analyze the functional MRI data, which is a

MATLAB (The Mathworks Inc., Natick, MA, USA) based

software (Welcome Trust Centre for Neuroimaging, Lon-

don, UK). On single-odor level, one sample t-test was per-
formed for the ON condition. Furthermore, for group level,

analysis contrast images from individuals were selected

for a random effect analysis and paired t-tests were per-

formed, between and within groups (GC vs N0GC).

Results are presented as mean ± standard deviation

(SD).

RESULTS

The demographic data along with the group wise test

scores for each odor are shown in Table 1. Results are

presented as mean ± standard deviation. Subjects from

GC and N0GC groups were matched for age. The two

groups differed significantly in number of males and

females v (1) = 4.91, p = 0.03. The groups did not

differ significantly in terms of odor identification score.

Compared to the N0GC group, the GC group scored

higher in the lateralization task for all four stimuli

(t � 1.78, p < 0.04) (Table 1). However, there were no

significant group differences for odor thresholds, ratings

of odor intensity and pleasantness (except for cherry

which was rated more intense by the N0GC group

(t = 3.12, p = 0.006). When grouping the odors into

trigeminal (peppermint + spearmint) and olfactory

stimuli (cherry + strawberry) a similar picture emerged

with lateralization scores being higher in the GC group

for both types of stimuli (t > 4.30, p < 0.001). No

significant differences were found for the odor

thresholds and ratings of intensity and pleasantness.

fMRI results

Brain activation for individual odors across all partic-
ipants (N = 40). One sample t-test (separately for the

Table 1. Demographic data of participants, separately for chewing gum

users (GC) and participants not using mint products (N0GC) (N = num-

ber of subjects, m = male, f = female, n.s = no significant difference;

p value for comparison between the two groups)

n = 40 GC

(n = 20)

N0GC

(n = 20)

P-value

Age (in years) 25.5 ± 2.6 26.4 ± 3.3 n. s.

Sex (m/f) 14/6 7/13 0.03

Identification score/16 13.7 ± 1.6 13.4 ± 1.1 n. s.

Lateralization scores/

20

Peppermint 14.6 ± 1.9 13.0 ± 2.3 0.03

Spearmint 15.0 ± 2.5 11.5 ± 2.6 <0.001

Cherry 13.7 ± 3.1 11.5 ± 3.0 0.02

Strawberry 14.4 ± 2.4 10.5 ± 2.2 <

0.001

Threshold Scores/8

Peppermint 6.7 ± 1.0 6.8 ± 0.8 n.s.

Spearmint 6.9 ± 1.0 6.8 ± 0.9 n.s.

Cherry 6.5 ± 0.9 6.6 ± 0.9 n.s.

Strawberry 6.5 ± 0.5 6.3 ± 0.8 n.s.

Intensity/10

Peppermint 6.7 ± 2.2 6.8 ± 1.6 n. s.

Spearmint 6.3 ± 2.1 6.5 ± 1.3 n. s.

Cherry 6.4 ± 2.8 8.1 ± 1.3 0.006

Strawberry 7.8 ± 1.6 8.1 ± 1.3 n. s.

Pleasantness/10

Peppermint 7.5 ± 1.7 6.6 ± 2.1 n.s.

Spearmint 5.9 ± 1.9 6.0 ± 1.7 n.s.

Cherry 5.2 ± 2.7 5.5 ± 3.0 n.s.

Strawberry 5.6 ± 2.6 5.3 ± 2.5 n.s.
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four odors) was done to investigate general cerebral

activation patterns in response to the four individual

odors. Amygdala and insular cortex were the common

areas activated by both olfactory and trigeminal stimuli

whereas thalamus along with substantia nigra (SN)

showed significant activations in the presence of

trigeminal odors, peppermint and spearmint. Peppermint

odor activated strong thalamic cluster than spearmint

odor (Table 2, Fig. 2).

Comparison between responses to trigeminal and

olfactory stimuli across all participants. Compared to

olfactory stimuli the trigeminal stimuli, across the total

study population (N = 40), produced activation in left

SN and left thalamus at p uncorrected < 0.001 for contrast

ON Trigeminal > ON olfactory whereas the reverse

comparison showed no activations (Fig. 3, Table 3).

Comparisons between activations to trigeminal and
olfactory odors separately for GC and N0GC groups. GC

group did not show any significant differences between

activations to trigeminal and olfactory stimuli (contrast

GC trigeminal versus GC olfactory). In contrast, N0GC

group showed stronger activation in right and

left insula for trigeminal stimuli compared to olfactory

stimuli (contrast N0GC trigeminal > N0GC olfactory,

p uncorrected < 0.001) (Fig. 4, Table 4).

Comparisons of trigeminal and olfactory activations
between groups GC and N0GC. No differences in the

brain activations were found for GC and N0GC group in

response to trigeminal odors. However, the GC group

exhibited higher activations in response to olfactory

odors compared to the N0GC group in bilateral insular

cortex (GC olfactory > N0GC olfactory at p

uncorrected < 0.001) (Fig. 5, Table 5).

DISCUSSION

Frequent chewing gum users (GC) localized the

trigeminal odors better than the N0GC group. This

indicated that the frequent, habitual use of chewing gum

was associated with increased chemosensory trigeminal

sensitivity. However, in terms of fMRI, they did not show

higher central-nervous activations in response to

trigeminal odors. It is worth saying that although GC

group derives reward or pleasure from the mint odor or

from the trigeminal stimulation, no evidence supporting

this (dopaminergic activation) was found. In contrast,

the N0GC group exhibited enhanced bilateral activations

in the insular cortex to trigeminal odors indicating that

the trigeminal odors were more meaningful and arousing

to them compared to the GC group. This activation in

the insular cortex may also relate to gustatory

associations. Because of the habitual use of an oral

stimulus, chewing gum, this might also serve as an

explanation why the GC group had enhanced olfactory

activation in comparison to the N0GC group.

Oleszkiewicz et al. (2018) showed that exposure to

trigeminal stimuli improves sensitivity towards chemosen-

sory stimuli. The present results appear to confirm these

findings with subjects from the GC group having higher

scores when localizing trigeminal odors peppermint and

spearmint. Another explanation of GC group lateralizing

peppermint better than the N0GC group could possibly

be due to its repeated sensory exposure whereas for

spearmint odor, GC group find its trigeminal association

with mint; as for pepper; (Han et al., 2018) whereas N0GC

group did not. In addition, Han et al., 2020 also showed

that subjects with relatively high use of minty chewing

gums exhibited higher responses to chemosensory stim-

uli compared to subjects with a lower frequency of minty

chewing gum use.

Yet, there are contradictory findings when it comes to

long-term exposure. Dalton et al. (2006) give one such

example of mixed effects where subjects when exposed

to the irritant acetic acid over a period of approximately

2 weeks, showed decreased intensity ratings in combina-

tion with decreased amplitudes of responses obtained

from the nasal respiratory epithelium. Conversely, inten-

sity ratings for the control irritant acetone increased in this

study in combination with increased amplitudes of

Table 2. Brain regions, involving all participants, activated for the 4 individual odors at FWE p corrected < 0.05 and cluster size k > 10 voxels, N = 40;

MNI coordinates presented in x, y, and z; L, left hemisphere; R right hemisphere

Odor (ON) k T value x y z Region

Peppermint 157 9.17 24 2 –18 Amygdala R

390 8.36 40 4 –8 Insula R

452 8.35 �38 0 –12 Insula L

256 7.64 10 –2 2 Thalamus R

106 7.36 �24 –2 �16 Amygdala L

24 7.60 12 –20 �12 SN R

Spearmint 276 7.49 46 20 –4 Insula R

333 6.71 �42 14 –10 Insula L

55 6.62 �22 0 –16 Amygdala L

56 6.23 24 0 –16 Amygdala R

31 5.66 12 0 6 Thalamus R

Cherry 22 6.09 �40 2 –8 Insula L

Strawberry 79 7.90 �24 0 –14 Amygdala L

100 7.83 24 2 –18 Amygdala R

81 7.32 �38 2 –8 Insula L

33 6.74 38 6 –8 Insula R
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responses from the nasal epithelium. This indicated that

effects of exposure to chemosensory irritants are not

uniform.

When we looked at brain activations in response

towards individual odors, we found overlapping neural

activations for the olfactory and trigeminal stimuli

perceived. Olfactory stimuli cherry and strawberry

produced significant activations in the insular cortex and

amygdala, which are activated in response to olfactory

stimuli. Here the insular cortex acts as an integration

area for olfactory, gustatory and trigeminal stimulation

(Savic, 2002). However, trigeminal odors peppermint

and spearmint also show activations in thalamus and sub-

stantia nigra.

Especially with regard to the thalamic activation, the

present results confirm previous work indicating that

thalamic activation is a crucial part of the processing of

nasal trigeminal sensations. Reasons for this include the

(1) increased arousal produced by trigeminal stimuli and

(2) the somatosensory nature of the trigeminal stimuli

(Pellegrino et al., 2017a; Han et al., 2018).

Our study supports previous findings, showing that

bimodal odors (having both olfactory and trigeminal

properties) are processed in brain regions such as

amygdala (Roussos and Hirsch, 2014), insular cortex,

and thalamus (Pellegrino et al., 2017b). ‘‘In other words,

overlapping activations in the olfactory areas that is

amygdala and insula, were seen for all the four odorous

stimuli (Fig. 2table 2). Whereas bimodal odors, pepper-

mint and spearmint that interact with both the olfactory

and trigeminal systems also showed activations in the

thalamus. The thalamus constitutes a major part of the

Fig. 2. BOLD responses for individual odors. N = 40; brain maps thresholded at FWE p corrected < 0.05. Here A = Peppermint odor;

B = Spearmint odor; C = Cherry odor; D = Strawberry odor, calibration bars represent threshold values.
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trigeminal pathway which is involved in mediating atten-

tion, chemosensory perception and learning (Courtiol

and Wilson, 2015). Apart from the thalamus, the right

substantia nigra was activated in response to the pepper-

mint stimulus. The substantia nigra receives sensory

input from the trigeminal system (Harper et al., 1979)

and is involved in the perception of trigeminal stimuli

(Starr et al., 2011).”

Although trigeminal and olfactory systems have

different peripheral pathways, they share brain

activations (Frasnelli et al., 2007) in areas such as

OFC, insula, somatosensory cortex and amygdala

(Boyle et al., 2007; Albrecht et al., 2010). Furthermore,

activations in these areas are typically more pronounced

for trigeminal stimuli as compared to olfactory stimuli.

Our results support this as we see stronger activations

in insula and amygdala for the mixed trigeminal-olfactory

stimuli peppermint and spearmint in comparison to the

Table 3. Brain regions, involving all participants, activated for contrast

ON Trigeminal > ON olfactory; N= 40; p uncorrected < 0.001 and cluster level

‘K’>10 voxels; L = left hemisphere and R = right hemisphere; MNI

coordinates presented in x, y, z

K T value x y z Region

16 4.09 �12 –20 �12 SN L

15 3.64 �12 –34 4 Thalamus L

Fig. 3. Trigeminal vs. Olfactory condition. N = 40 for contrast ON

trigeminal > ON olfactory; p uncorrected < 0.001; cluster level ‘K’> 10

voxels; calibration bars represent threshold values.

Table 4. Brain regions activated for contrast N0GC trigeminal > N0GC

olfactory; N = 20 each, p uncorrected < 0.001 and cluster level ‘K’ > 10

voxels; L = left hemisphere and R = right hemisphere; MNI

coordinates presented in x, y, z

K T value X y z Region

100 3.82 38 18 4 Insula R

18 3.63 �36 16 0 Insula L

Table 5. Brain regions for comparisons between GC and N0GC groups

- contrast GC olfactory > N0GC olfactory at p uncorrected < 0.001 and at

cluster level ‘K’ > 10 voxels, L = left hemisphere and R = right

hemisphere; MNI coordinates presented in x, y, z

K T value X y z Region

91 4.12 38 24 6 Insula R

38 3.48 �30 22 0 Insula L

Fig. 4. Trigeminal vs. Olfactory condition: N0GC group. Brain activa-

tions in bilateral insular cortex for contrast N0GC trigeminal > N0GC

olfactory; p uncorrected < 0.001; cluster level ‘K’> 10 voxels, calibration

bars represent threshold values.

Fig. 5. Olfactory condition: GC versus N0GC group. Brain activations

in bilateral insular cortex for contrast GC olfactory > N0GC olfactory; p

uncorrected < 0.001; cluster level ‘K’> 10 voxels, calibration bars

represent threshold values.
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olfactory stimuli cherry and strawberry. These results can

be elegnatky explained by the overlapping of neural net-

works for the trigeminal and olfactory systems (Bensafi

et al., 2008; Boyle et al., 2007; Hummel et al., 2005).”

In conclusion, GC subjects appeared to be more respon-

sive and sensitive towards trigeminal chemosensory stim-

uli. However, this did not translate into differences in

central-nervous activations to trigeminal stimuli, but the

GC group exhibited stronger activation towards olfactory

stimuli. Instead, non-frequent chewing gum users showed

enhanced trigeminal activation in bilateral insular cortex.

Therefore, although the N0GC group was less sensitive,

the trigeminal stimuli obviously were more arousing and

meaningful to the N0GC group because of their lower

degree of exposure in daily life.
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Discussion and Outlook 

In our first study (publication 1), in this study, we aimed to find an efficient, reliable yet less 

time-consuming method to calculate the OB volume. In fact, measurement time for the MS 

method was approximately 7–10 minutes whereas it takes only one minute for the BF method. 

Our study indicated that the BF approach provides reliable results which are in accordance 

with the results obtained from MS and when used by experts and non- experts. 

So far, the MS of coronal slices is the most widely used method for volumetric measurements 

of the OB (V. Gudziol et al., 2009). Accuracy and reliability of MS method has been 

demonstrated clearly in previous studies (Mueller et al., 2005; Yousem et al., 1997). In the 

present study, we also followed up accuracy and reliability for the measurements made by the 

BF approach using ITK-SNAP software. This software was chosen for its user-friendly interface 

and free availability. However, many other software solutions could be used for this straight-

forward technique. For the BF approach, intraclass coefficients of correlation between 

measurements of the two observers were at r = 0.96 for right OB and r = 0.89 for left OB. The 

results drawn from this new approach were comparable with the results obtained from MS 

approach with r = 0.84 for right OB and r = 0.86 for left OB. 

The focus throughout the project was on the introduction of a method that can be clinically 

acceptable, with time demands being a major issue. This is important, as OB volume is 

considered as a measure to evaluate the status of olfactory functioning. There has been 

evidence in support of how OB volume clinically describes the severity of olfactory loss. For 

example, in comparison to hyposmic patients, OB volumes were found to be smaller for 

anosmic subjects in olfactory loss, following infections of the upper respiratory tract or head 

trauma (Han, Croy, et al., 2020). Importantly, OB volume also seems to be a predictor of 

recovery in patients with post-infectious olfactory loss (Rombaux et al., 2012). Hence, the 

routine assessment of OB volume appears to be useful in patients with olfactory loss. This is 

more likely to be diagnostically implemented with the availability of a fast and convenient 

approach. 

The present investigation also revealed that the internal consistency of measurements made 

with either method was excellent. Hence, it can be noted that the new BF method can be used 

as a clinically acceptable, efficient, reliable, easy, and quick approach to calculate OB volumes. 

However, it has to be kept in mind that both MS and BF method remain subjective and voxel 

selection may vary depending on skills of the individual observers which requires some degree 

of training. 

To conclude, the present results suggest that the BF method for OB volumetric is reliable and 

produces valid results, comparable to the results from MS. The new technique is a simple, 
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quick approach and may require less training than MS of the OB. It is hoped that this technique 

paves the road for the routine clinical assessment of OB volume in patients with olfactory loss. 

In our second study (Publication 2), we investigated neural processing of words with 

olfactory associations in patients with life-long olfactory loss (congenital anosmia, CA) in 

comparison with a group of control participants with normal olfaction (NC) and a group of 

patients with acquired olfactory dysfunction (idiopathic anosmia, IA). Most importantly, the CA 

group, having never sensed any olfactory stimuli, showed stronger activations in the posterior 

OFC, extending to insular cortex compared to NC participants during OW reading. The 

activation in the OFC region is comparable to what has been observed in both healthy controls 

and patients with acquired olfactory loss where reading of olfactory associated words led to 

similar activations (González, Barros-Loscertales, Pulvermüller, Meseguer, Sanjuán, Belloch, 

& Avila, 2006; Han, Croy, et al., 2020). During expectation of OW, the IA patients demonstrated 

stronger activation in the posterior OFC extending to insula as compared to the CA patients. 

The OFC is relevant for the processing and integration of information from different sensory 

modalities (Kringelbach & Rolls, 2004). In addition, activation in the OFC supports the 

interaction between the odor related word cues and their respective odor percepts (Olofsson 

et al., 2014). In comparison to NC, IA patients when expecting the olfactory associated words 

also showed major activations in caudate, which can be interpreted for its involvement in 

executive processes (Seger & Cincotta, 2005) specifically, in goal-directed actions. Moreover, 

in comparison to CA, NC group showed activations extending to ACC, which indicate its key 

role in attention (Botvinick, 2007; Pessoa, 2008) and in working memory  tasks (The Prefrontal 

Cortex - 5th Edition). NC, IC, and CA seem to use distinct strategies when it comes to 

anticipating words with olfactory associations. 

During OW reading, stronger activation of a very similar cluster in the posterior OFC extending 

to insula was found among CA as compared to NC groups. As stated above, this region is 

involved in multisensory integrative processing, that receive information from the olfactory, 

gustatory and visual sources (Bonnici et al., 2016; Fournel et al., 2017; Seghier, 2013). Unlike 

the expectation condition where no direct odor-related cues were shown, displaying OW could 

initiate neural processing of word related semantic and olfactory information more efficiently. 

Although CA patients have a life-long deprivation of olfactory perception, their knowledge 

regarding other chemical inputs (e.g. gustatory and trigeminal input) as well as the semantic 

meaning of the OW remains intact. Besides, CA patients have been shown to exhibit slightly 

enhanced abilities for non-chemical multisensory (e.g. audio-visual) integration compared to 

people with intact olfaction (Plailly et al., 2012), indicating an existing compensatory 

mechanism. Therefore, stronger activation during OW reading among the CA group may 

reflect the process of multisensory integration, involving semantic comprehension. The exact 

process behind the increased activation among CA remains to be explored. Stronger activation 
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was also found in the occipital cortex among CA compared to IA during reading of OW, possibly 

indicating an enhanced attention paid to the olfactory-related words among CA patients. 

A number of fMRI studies have reported similar patterns of brain activation during olfactory 

memory tasks cued by non-odorous objects such as images or words (Arshamian et al., 2013b; 

Gottfried, 2010b; Lehn et al., 2013) and during the processing of physical olfactory stimuli. 

Brain activity during representation of sensory stimulus without direct external stimulus (mental 

imagery) has been studied in various modalities including visual, auditory and tactile. In 

general, regions associated with mental imagery were found to be those regions associated 

with perception in the same sensory modality (Halpern, 2001; Kosslyn et al., 2001). In the 

present case one would expect participation of primary and secondary olfactory areas, given 

that these participate in olfactory perception (Sobel et al., 1998; Zald & Pardo, 2000). The 

present observed activation of OFC when reading the OW, can be related to the odor imagery 

approach as shown in previous studies. There activation in the right OFC, associating imagery 

with the perception of physically present odors was related to the experienced realness or 

“vividness” of an olfactory image (Zald & Pardo, 2000; Zatorre & Jones-Gotman, 2000). In our 

study, given the visual sources, integration of visual and olfactory information occurs in OFC, 

where the odor percepts were linked to their respective names. Djordjevic et al. (Djordjevic et 

al., 2005b) also reported activation of the insular cortex as a result of odor imagery. 

Neuroimaging studies suggest that a number of factors could modify activation of these 

olfactory brain regions. Among these possible effects are: increased respiratory amplitude, due 

to sniffing (Kleemann et al., 2009), attentional demands (Geisler & Murphy, 2000), lexico-

semantic processing of words (González, Barros-Loscertales, Pulvermüller, Meseguer, 

Sanjuán, Belloch, & Avila, 2006), or cross modal associative learning (Royet et al., 2013). In 

all, olfactory top-down processing has a significant role in encoding or recalling of learned 

information (Rolls, 2011a), which results in anticipation of an odor or processing of odor-

associated cues (Han, Croy, et al., 2020). Therefore, based on the present results it appears 

that there is overlap of neural processing in terms of both bottom-up and top-down olfactory 

representation. 

A few limitations apply to the current study. First, the sample size is small. However, given the 

scarcity of CA cases, studies on this group of patients are typically not large (i.e., less than 20 

patients). Second, the breathing was not monitored during the MRI scan. The possible 

alteration of breathing in  patients (H. Gudziol et al., 2010) may introduce noise as variable that 

affect the observed brain responses (Kareken et al., 2004; Sobel et al., 1998). Thirdly, we did 

not explore the association of the presented words with foods. Such an association might 

explain some of the overlapping activations in the three groups of patients; fourthly, for reasons 

of study design, olfactory words and control words were not evaluated for their valence and 

their association with edibility which also might impact the processing of words. 
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In conclusion, our results demonstrate different neural responses during expectation and 

reading of words with strong olfactory associations among people with acquired anosmia, 

congenital anosmia and normosmia. Increased activation of the higher-order brain regions 

related to multisensory integration among CA during reading of olfactory related words may 

suggest a compensatory mechanism for processing of semantic olfactory cues and is an 

expression of adaptive changes in response to changes of olfactory function. 

In our third study (Publication 3), frequent chewing gum users (GC) localized the trigeminal 

odors better than the N’GC group. This indicated that the frequent, habitual use of chewing 

gum was associated with increased chemosensory trigeminal sensitivity. However, in terms of 

fMRI, they did not show higher central-nervous activations in response to trigeminal odors. It 

is worth saying that although GC group derives reward or pleasure from the mint odor or from 

the trigeminal stimulation, no evidence supporting this (dopaminergic activation) was found. In 

contrast, the N’GC group exhibited enhanced bilateral activations in the insular cortex to 

trigeminal odors indicating that the trigeminal odors were more meaningful and arousing to 

them compared to the GC group. This activation in the insular cortex may also relate to 

gustatory associations. Because of the habitual use of an oral stimulus, chewing gum, this 

might also serve as an explanation why the GC group had enhanced olfactory activation in 

comparison to the N’GC group. 

(Oleszkiewicz et al., 2018) showed that exposure to trigeminal stimuli improves sensitivity 

towards chemosensory stimuli. The present results appear to confirm these findings with 

subjects from the GC group having higher scores when localizing trigeminal odors peppermint 

and spearmint. Another explanation of GC group lateralizing peppermint better than the N’GC 

group could possibly be due to its repeated sensory exposure whereas for spearmint odor, GC 

group found its trigeminal association with mint; as for pepper; (Han et al., 2018) whereas the 

N’GC group did not. In addition, (Han, Croy, et al., 2020)also showed that subjects with 

relatively high use of minty chewing gums exhibited higher responses to chemosensory stimuli 

compared to subjects with a lower frequency of minty chewing gum use. 

Yet, there are contradictory findings when it comes to long-term exposure. (Dalton et al., 2006) 

gave one such example of mixed effects where subjects when exposed to the irritant acetic 

acid over a period of approximately 2 weeks, showed decreased intensity ratings in 

combination with decreased amplitudes of responses obtained from the nasal respiratory 

epithelium. Conversely, intensity ratings for the control irritant acetone increased in this study 

in combination with increased amplitudes of responses from the nasal epithelium. This 

indicated that effects of exposure to chemosensory irritants are not uniform and may depend 

on the stimulant, the duration of exposure, the interval between exposures, context or the 

concentration of the stimulant. 
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When we looked at brain activations in response towards individual odors, we found 

overlapping neural activations for the olfactory and trigeminal stimuli perceived. Olfactory 

stimuli cherry and strawberry produced significant activations in the insular cortex and 

amygdala, which are activated in response to olfactory stimuli. Here the insular cortex acts as 

an integration area for olfactory, gustatory and trigeminal stimulation (Savic et al., 2002). 

However, trigeminal odors peppermint and spearmint also showed activations in thalamus and 

substantia nigra. 

Especially with regard to the thalamic activation, the present results confirm previous work 

indicating that thalamic activation is a crucial part of the processing of nasal trigeminal 

sensations. Reasons for this include the (1) increased arousal produced by trigeminal stimuli 

and (2) the somatosensory nature of the trigeminal stimuli (Han et al., 2018; Pellegrino, 

Sinding, et al., 2017). 

Our study supports previous findings, showing that bimodal odors (having both olfactory and 

trigeminal properties) are processed in brain regions such as amygdala (Roussos & Hirsch, 

2014), insular cortex, and thalamus (Pellegrino, Drechsler, et al., 2017). In other words, 

overlapping activations in the olfactory areas that is amygdala and insula, were seen for all the 

four odorous stimuli (Fig. 2, table 2, publication 2). Whereas bimodal odors, peppermint and 

spearmint that interact with both the olfactory and trigeminal systems also showed activations 

in the thalamus. The thalamus constitutes a major part of the trigeminal pathway, which is 

involved in mediating attention, perception and learning (Courtiol & Wilson, 2015). Apart from 

the thalamus, the right substantia nigra was activated in response to the peppermint stimulus. 

The substantia nigra receives sensory input from the trigeminal system (Harper et al., 1979) 

and is involved in the perception of trigeminal stimuli. Most odorants not only stimulate olfactory 

receptor neurons but also activate the intranasal trigeminal nerve. The simultaneous activation 

of the olfactory and the trigeminal system leads to an interaction in the brain. Therefore, 

assessment of the trigeminal impact of odorants may be difficult in subjects with a normal 

sense of smell. To obtain a deeper insight into both, mechanisms of changes in trigeminal 

sensitivity in anosmic patients and interactions between the olfactory/trigeminal systems in 

healthy subjects, 21 patients with isolated congenital anosmia (ICA) were investigated in this 

series of explorative, hypothesis-generating experiments and compared with 35 healthy 

controls. Trigeminal sensitivity was measured by psychophysical (lateralization task, intensity 

ratings) and electrophysiological (trigeminal event-related potential, negative mucosal 

potential) means. ICA patients were found to have higher peripheral activation than controls. 

On central levels, however, similar responsiveness to trigeminal stimuli was found in ICA 

patients when compared with healthy subjects. The results of the study are discussed by 

proposing a model of mixed sensory adaptation/compensation in the interactions between 

olfactory and the trigeminal system. 
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Although the trigeminal and olfactory systems have different peripheral pathways, they share 

brain activations (Frasnelli et al., 2007) in areas such as OFC, insula, somatosensory cortex 

and amygdala (Albrecht et al., 2010; Boyle et al., 2007). Furthermore, activations in these 

areas are typically more pronounced for trigeminal stimuli as compared to olfactory stimuli. Our 

results support this as we see stronger activations in insula and amygdala for the mixed 

trigeminal-olfactory stimuli peppermint and spearmint in comparison to the olfactory stimuli 

cherry and strawberry. These results can be elegantly explained by the overlapping of neural 

networks for the trigeminal and olfactory systems Bensafi et al., 2008; Boyle et al., 2007; 

Hummel et al., 2005). In conclusion, GC subjects appeared to be more responsive and 

sensitive towards trigeminal chemosensory stimuli. However, this did not translate into 

differences in central-nervous activations to trigeminal stimuli, but the GC group exhibited 

stronger activation towards olfactory stimuli. Instead, non-frequent chewing gum users showed 

enhanced trigeminal activation in bilateral insular cortex. Therefore, although the N’GC group 

was less sensitive, the trigeminal stimuli obviously were more arousing and meaningful to the 

N’GC group because of their lower degree of exposure in daily life. 
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Summary in German 

Hintergrund 

Der Geruchssinn spielt eine wichtige Rolle in unserem täglichen Leben, während sein Fehlen 

erhebliche Auswirkungen auf das Leben von Menschen mit Geruchsstörungen hat, 

einschließlich Veränderungen in ihrer geistigen, sozialen und körperlichen Gesundheit. Der 

Verlust des Geruchssinns kann eine Vorstufe zu schweren neurodegenerativen Erkrankungen 

wie Parkinson und Alzheimer sein, und kann mit depressiven Symptomen einhergehen. Daher 

sollten Menschen mit Riechverlust adäquat untersucht und behandelt werden. In den drei zu 

einer Arbeit zusammengefassten Veröffentlichungen wurde die MRT zur Untersuchung der 

Riechfunktion und ihrer Plastizität eingesetzt, vor allem bei Patienten mit Riechstörungen. 

Publikation 1 befasste sich mit der Verbesserung bestehender Methoden zur Bewertung des 

Volumens des Bulbus olfactorius (OB) hinsichtlich der strukturellen Bewertung der 

Riechfunktion. Publikation 2 befasste sich mit der funktionellen Plastizität des olfaktorischen 

Systems bei Patienten mit angeborener und erworbener Anosmie, wenn der olfaktorische 

Input fehlt. Publikation 3 befasste sich mit der Plastizität des chemosensorischen Systems am 

Beispiel der gewohnheitsmäßigen Exposition zu trigeminalen Gerüchen. 

Methoden 

In Publikation 1 wurden 52 Probanden einer 3-T-MRT Untersuchung des Gehirns unterzogen. 

Alle Probanden wurden mit der "Sniffin' Sticks"-Testbatterie auf ihre orthonasale Riechfunktion 

hin getestet. Mit Hilfe der AMIRA®-Software berechneten zwei geschulte Beobachter das OB-

Volumen mit einem manuellen Segmentierungsverfahren, der planimetrischen manuellen 

Konturierung (PMC) (Fläche in mm3). Mit ITK-SNAP®-Software verwendeten die gleichen 

Beobachter die neue Methode "box-frame" zur Berechnung des OB-Volumens. Zunächst 

wurde die Anzahl der Schichten (Länge) mit deutlicher Erkennbarkeit des OB notiert. Bei der 

Box-Methode wurde angenommen, dass Höhe und Breite der Markierungen in einem Winkel 

von 90° zueinander stehen. Das Volumen wurde als Vielfaches von L x B x H (Scheibendicke 

in mm3) berechnet. Bei divergenten Befunden wurde ein dritter Beobachter herangezogen, 

und die zwei am nächsten liegenden Volumina mit weniger als 10 % Unterschied zur weiteren 

Betrachtung ausgewählt. 

In Publikation 2 wurden 40 Probanden mit 3-T-fMRT untersucht. Davon waren 18 gesunde 

Probanden, 14 waren Probanden mit kongenitaler Anosmie und 8 hatten eine idiopathische 

Anosmie. Den Probanden wurden 36 Wörter mit starker olfaktorischer Assoziation (OW) und 

36 Kontrollwörter mit geringer oder keiner olfaktorischen Assoziation (CW) präsentiert. Die 

Teilnehmer wurden angewiesen, die Anweisungen und Wörter zu lesen. Vor den Wortblöcken 

wurden die Teilnehmer darauf hingewiesen, sich auf die olfaktorischen Aspekte der 

angezeigten Wörter zu konzentrieren, um eine Erwartung für im Folgenden gezeigten Wörter 
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zu wecken und um die OW- von den CW-Blöcken klar zu trennen. Geruchsbezogene 

semantische Unterschiede wurden als Kriterium für die Unterscheidung zwischen den 

Aktivierungen gewählt. Wir verglichen vor allem Aktivierungsphasen, in denen OW erwartet 

wurden mit denjenigen, in denen OW gelesen wurden. 

In Publikation 3 nahmen 40 gesunde Probanden an einer fMRT-Untersuchung teil. Ein Teil der 

Probanden kaute regelmäßig Kaugummi mit Minzegeschmack (GC, n = 20), ein anderer Teil 

verwendete nie bzw. sehr selten Kaugummi oder andere Lebensmittel mit Minzgerüchen, z.B. 

Pfefferminztee (N'GC, n = 20). Mit Hilfe eines computergesteuerten Olfaktometers wurden den 

Probanden in vier separaten Sitzungen zwei „trigeminale Gerüche“ (Pfefferminze und Minze) 

und zwei „olfaktorische Gerüche“ (Kirsche und Erdbeere) verabreicht. Nach jeder Sitzung 

bewerteten die Probanden die Intensität und die Angenehmheit der angebotenen Gerüche. 

Ergebnisse 

In Publikation 1 berechneten wir die OB-Volumina mit beiden Techniken und fanden 

vergleichbare Ergebnisse. Für die von beiden Beobachtern berechneten Volumina wurde eine 

hohe Korrelation festgestellt. Für die manuelle Segmentierung betrug Cronbachs α 0,91 bzw. 

0,93 für das rechte bzw. linke OB-Volumen, während für die Box-Frame-Methode α 0,94 bzw. 

0,90 für das rechte bzw. linke OB-Volumen betrug. 

In Publikation 2 zeigten die Teilnehmer mit idiopathischer und congenitaler Anosmie während 

der Erwartung der OW eine stärkere Aktivierung im posterioren OFC, die sich bis zur rechten 

Insula, dem Caudatum und dem fronto-medialen OFC erstreckte. Während des Lesens der 

OW zeigten Teilnehmer mit congenitaler Anosmie eine stärkere Aktivierung im posterioren 

OFC, die bis zur Insula reichte. 

In Publikation 3 zeigte die GC-Gruppe eine höhere trigeminale Empfindlichkeit im Vergleich 

zur N'GC-Gruppe. Olfaktorische Gerüche aktivierten den bilateralen insulären Kortex und die 

Amygdala. Neben den olfaktorischen Bereichen (Amygdala, insulärer Kortex) führten 

trigeminale Gerüche auch zu Aktivierungen im rechten Thalamus und der rechten Substantia 

nigra. In der GC-Gruppe führten olfaktorische Gerüche zu einer stärkeren bilateralen 

Aktivierung des insularen Kortex als in der N‘GC-Gruppe, während für trigeminale Gerüche 

keine derartigen Unterschiede beobachtet wurden. GC-Probanden schienen auf trigeminale 

chemosensorische Reize empfindlicher zu reagieren. 

Schlussfolgerungen 

Mit der Veröffentlichung 1 konnten wir eine neue zuverlässige Methode vorstellen, die 

plastische Veränderungen auf der Ebene des OB auf effiziente Weise messbar macht. Die 

Methode ist zeitsparend und erfordert nur einen geringen technologischen Aufwand, was in 
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die klinische Routine bedeutsam ist. Damit können strukturelle plastische Veränderungen des 

zentralnervösen Riechsystems zu diagnostischen Zwecken effektiv genutzt werden.  

In Publikation 2 fanden wir funktionelle Plastizität bei Patienten mit angeborener und 

erworbener Anosmie. Dieser Ansatz zeigte eine Aktivierung in den sekundären 

Geruchsregionen wie dem posterioren OFC, die sich bei Menschen mit angeborener Anosmie 

im Vergleich zu Riechgesunden bis zur Insula ausdehnte. Diese Aktivität ist am ehesten im 

Zusammenhang mit multisensorischer Integration zu sehen, was wiederum auf 

kompensatorische Mechanismus für die Verarbeitung semantischer Geruchsinformationen bei 

fehlendem Riechvermögen schließen lässt.  

In Publikation 3 untersuchten wir die Plastizität des chemosensorischen Systems bei 

gewohnheitsmäßiger Exposition zu trigeminalen Gerüchen. Gegenüber selektiv olfaktorischen 

Aktivierungen gibt es Überlappungen aber auch deutliche Unterschiede in der Peripherie und 

im ZNS, wie trigeminale Gerüche verarbeitet werden. Erwartungsgemäß schienen Teilnehmer 

mit habituellem Minzgebrauch empfindlicher auf trigeminale chemosensorische Reize zu 

reagieren. Dies führte jedoch nicht zu Unterschieden in der zentralnervösen Aktivierung für 

trigeminale Reize. Vielmehr erschienen trigeminale Gerüche für die Gruppe mit geringem 

Minzkonsum bedeutungsvoller und erregender. In der Summe zeigen die Arbeiten, dass das 

chemosensorische System außerordentlich plastisch ist, auf stuktureller und funktioneller 

Ebene und wir uns ständig an unsere Umwelt anpassen. 
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Summary in English 

Background 

Sense of smell or olfaction has a major role in our daily life whereas its absence has a major 

consequence on life of people with olfactory dysfunction including changes in their mental, 

social and physical health. Smell loss is a precursor of major neurodegenerative disorders 

such as Parkinson’s and Alzheimer’s disease and negligence in treatment might increase risk 

of major diseases. Therefore, people need to be aware and smell loss needs to be 

acknowledged with proper treatment.  

In the three publications mentioned, MRI was used to investigate olfactory function and its 

plasticity, mostly in patients with olfactory dysfunction. Publication 1 focused on the 

improvement of existing methods to assess OB volume as a structural assessment of olfactory 

function. Publication 2 focused on the functional plasticity of olfactory system in patients with 

congenital and acquired anosmia when in absence of olfactory input. Publication 3 focused on 

the plasticity of chemosensory system using habitual exposure of trigeminal odors as an 

example. 

 

Hypothesis 

In publication 1, we aimed at introducing a new efficient, faster way to calculate OB volume. 

We examined 1) its test-retest reliability and 2) validity, comparing them to the established 

technique, i.e. OB volumetric based on manual segmentation of OB boundaries (3) checking 

usability of the new technique by experts and non- experts. Change in OB volume correlates 

well with the odor functioning, however, assessment of it requires volume delineation and is 

time consuming and also requires specific training. Because of this, it is not yet included in 

routine examination. This might change with the availability of a reliable but less investigator 

based and faster method. 

In publication 2 using fMRI, we aimed to investigate top- down brain processing of odor-related 

words in CA and compare that to patients with acquired IA and NC. We hypothesized that IA 

and NC subjects show more activations in olfactory associated areas because of their pre-

existing olfactory associated semantic knowledge whereas activations in CA subjects were 

expected to be significantly lower as compared to others because of their complete lack of 

olfactory experience. To date, there are very few studies focusing on the functional alterations 

in congenital anosmic patients. 

In publication 3, using fMRI, we used habitual consumption of foods with trigeminal stimulants 

as a model to investigate effects of long-term trigeminal stimulation. A reason behind choosing 
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the use of chewing gum is because it is one of the most popular pastimes in the younger 

population. we aimed to study possible changes of the chemosensory systems in response to 

prolonged stimulation to trigeminal stimuli. Brain activations were compared between GC and 

N’GC in response to both trigeminal and olfactory odors using functional brain imaging. For 

testing, we included the minty flavor of chewing gums, namely peppermint and spearmint as 

‘‘trigeminal odor” eliciting a cooling and even slightly painful sensation (McKemy et al., 2002) 

and non-minty, olfactory stimuli such as strawberry and cherry. We hypothesized reduced 

habituation effect in frequent gum chewers. 

Methods 

In publication 1, 52 subjects underwent 3 T MRI of the brain. All subjects were tested for their 

orthonasal olfactory functioning using the “Sniffin’ Sticks” test battery. Using AMIRA software, 

two trained observers calculated the OB volume using manual segmentation approach that is 

the planimetric manual contouring (PMC) technique (surface in mm3). Using ITK-SNAP, two 

trained observers used the new method “box-frame” to calculate OB volume. Firstly, the 

number of slices (length) with distinct visibility of the OB was noted. Using box approach, 

marking annotations height and width were assumed to be at 90 degree angle to each other. 

Volume was calculated as multiple of l*w*h* slice thickness mm3. After input of the third 

observer, two closest volumes with less than 10% difference were selected. 

In publication 2, forty subjects underwent 3 T fMRI scanning. Out of them, 18 were healthy 

subjects, 14 were congenital anosmic subjects and 8 were idiopathic. Thirty-six words with 

strong olfactory association (OW) and 36 control subjects (less or no olfactory association) 

were presented to the subjects. Participants were instructed to covertly read the instructions 

and words. Cueing prior to word blocks was adopted to guide participants to (1) focus on the 

olfactory aspects of the displayed words (2) induce an expectation for the following words; and 

(3) to clearly separate the OW from the CW blocks. Olfactory related semantic differences 

were chosen as a criterion to differentiate between conditional activation. We focused on OW 

expect and OW read. We did one way ANOVA to test between group differences regarding 

OW expect and OW read. 

In publication 3, forty healthy subjects participated in fMRI study. GC, n = 20 and N’GC, n = 20 

were identified based on a questionnaire about their mint consumption patterns. Using 

computer-controlled olfactometer, subjects received two trigeminal odors peppermint and 

spearmint and two olfactory odors cherry and strawberry in four separate sessions. After each 

session, subjects rated intensity, pleasantness for the delivered odors. 

Results 

In publication 1, we calculated OB volumes using both techniques and found comparable 

outcomes. High inter-observer reliability was found for volumes calculated by both observers. 
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For manual segmentation, Cronbach’s alpha (α) was 0.91 and 0.93 for right and left OB 

volume, respectively, whereas for the box-frame method αwas 0.94 and 0.90 for right and left 

OB, respectively. 

In publication 2, during the expectancy condition of OW, IA and NC groups showed stronger 

activation in posterior OFC extending to right insula, caudate region and frontal medial OFC 

respectively. Whereas during the reading condition of OW, CA patients showed stronger 

activation in posterior OFC extending to the insula. 

In publication 3, The GC group exhibited higher trigeminal sensitivity compared to the N’GC 

group. (2) Olfactory odors activated bilateral insular cortex and amygdala. Apart from olfactory 

areas (amygdala, insular cortex), trigeminal odors also produced activations in right thalamus 

and right substantia nigra. (3) In the GC group, olfactory odors produced higher bilateral insular 

cortex activation than in N0GC group, but no such differences were observed for trigeminal 

odors. GC subjects appeared to be more responsive to trigeminal chemosensory stimuli. 

Conclusions 

With publication 1 we introduced a new reliable method that allows us to track plastic changes 

at the level of OB in a very efficient way. This method is time efficient, requires less technicality 

which might pave its way into routine clinical workup for better assessment in patients with 

olfactory loss.  

With publication 2, we found functional plasticity in patients with congenital and acquired 

anosmia when in absence of olfactory input. The top-down approach gave a deeper 

understanding of higher order brain activations in people with olfactory loss. This approach 

successfully showed activation in the secondary olfactory regions such as posterior OFC 

extended to insula in congenital anosmic patients compared to healthy controls. This activity 

is related to multisensory integration suggesting a compensatory mechanism for processing of 

semantic olfactory cues.  

With publication 3, we accessed plasticity of the chemosensory system with habitual exposure 

to trigeminal odors. There exist peripheral and central differences in the way trigeminal odors 

are processed. Behaviorally - as expected - frequent mint consumers appeared to be more 

responsive and sensitive towards trigeminal chemosensory stimuli. However, this did not 

translate into differences in central-nervous activations to trigeminal stimuli. Rather, trigeminal 

odors were more meaningful and arousing for the group with non-frequent mint consumption. 
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